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Abstract: Remarkable progress in radio frequency and micro-electro-mechanical systems integrated 

circuit design over the last two decades has enabled the use of wireless sensor networks with 

thousands of nodes. It is foreseen that the fifth generation of networks will provide significantly 

higher bandwidth and faster data rates with potential for interconnecting myriads of heterogeneous 

devices (sensors, agents, users, machines, and vehicles) into a single network (of nodes), under the 

notion of Internet of Things. The ability to accurately determine the physical location of each node 

(stationary or moving) will permit rapid development of new services and enhancement of the entire 

system. In outdoor environments, this could be achieved by employing global navigation satellite 

system (GNSS) which offers a worldwide service coverage with good accuracy. However, installing a 

GNSS receiver on each device in a network with thousands of nodes would be very expensive in 

addition to energy constraints. Besides, in indoor or obstructed environments (e.g., dense urban areas, 

forests, and canyons) the functionality of GNSS is limited to non-existing, and alternative methods 

have to be adopted. Many of the existing alternative solutions are centralized, meaning that there is a 

sink in the network that gathers all information and executes all required computations. This approach 

quickly becomes cumbersome as the number of nodes in the network grows, creating bottle-necks 

near the sink and high computational burden. Therefore, more effective approaches are needed. 

As such, this work presents a survey (from a signal processing perspective) of existing distributed 

solutions, amalgamating two radio measurements, received signal strength (RSS) and angle of arrival 

(AOA), which seem to have a promising partnership. The present article illustrates the theory and 

offers an overview of existing RSS-AOA distributed solutions, as well as their analysis from both 

localization accuracy and computational complexity points of view. Finally, the article identifies 

potential directions for future research. 

Keywords: distributed localization; hybrid localization; fifth generation (5G); Internet of Things 

(IOT); wireless sensor network (WSN); received signal strength (RSS); angle of arrival (AOA) 

 

 

1. Introduction 

Real-time localization systems have gained much attention in the research community in the 

past several years [1–21]. In addition, works that highlight the potential of exploiting mobility of 

nodes in the localization process have emerged recently [22–25]. This is mainly owed to extensive 

technological advances and the requirement for seamless solutions in location-based services. It is 

expected that fifth generation (5G) network will have the potential to interconnect an extensive 
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number of heterogeneous (mobile or stationary) devices (objects, users, vehicles) into a single network 

(of nodes), called Internet of things (IoT) [26]. In large-scale networks with thousands of nodes, 

human moderation is almost impossible, and autonomous network configuration becomes a very 

desirable feature. Therefore, the topic of localization is expected to attract even more interest in 

the future [27–29]. In fact, location-awareness is the key component in various other applications, 

such as emergency and health care services, intruder detection, precision agriculture, ocean data 

acquisition, or asset tracking, to name a few. For instance, location information is crucial for detecting 

and preventing fire hazards in forests, as illustrated in Figure 1, where a sensor network is employed 

to detect fire and, in cooperation with a fleet of autonomous aircraft, extinguish the danger [30]. 

 

Figure 1. Application of a wireless sensor network in forest firefighting. 

A possible way to obtain a more accurate and granular information from the field is to employ 

a low cost, power-efficient, flexible, reconfigurable, and multifunctional smart sensing system 

(e.g., with programmable filters and power management units [31] or sensor-to-digital interface [32]). 

Such a system combines fixed and mobile sensors in a flexible wireless sensor network, which can 

acquire weather data, together with visible and infrared images for local classification of the fire front. 

These sensors could be installed on vehicles/aircraft involved in fire suppression, to reduce subjectivity 

of human-dependent analysis and improve operational coordination. This could be done by sending 

the location information of the target that sensed the fire danger (after processing it on its own) and 

fire intensity to the decision support systems to alert the system, in a similar manner as illustrated 

in Figure 1. 

In terms of outdoor environments, global navigation satellite system (GNSS) is considered to 

be a universally accepted solution, since it offers global coverage and excellent localization accuracy. 

Nonetheless, its service is limited or even unavailable in indoor or obstructed environments where 

line of sight to satellites is obstructed, such as dense urban areas, forests, or canyons. Instead, 

alternative solutions for accurate localization based on already deployed terrestrial technologies 

is encouraged (which can possibly complement the ones based on satellites). Such technologies 

include wireless fidelity, Bluetooth, narrow-band IoT, ultra-wide band, near-field communication, 

radio-frequency identification, signals of opportunity, third generation partnership project/long-term 

evolution, and inertial measurement units. On the other hand, in indoor environments (or other ones 

where satellite reception is not feasible), there is no convergence towards a single solution, and it is an 

open question if there will ever be, due to the high degree of difficulty of the problem in such harsh 

environments (multipath propagation, obstruction of a direct path, etc.) [7]. 
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In this survey, we study the problem of distributed localization based on an integration of a specific 

set of radio measurements. The problem is studied in detail from a signal processing point of view in 

its most general and widely used statistical form. A set of solutions to the problem, considered as 

the state-of-the-art, are presented and their main ideas are explained in a clear although informal 

fashion. The identified solutions are analyzed from both computational complexity and localization 

accuracy perspectives, with a theoretical lower bound included in the latter comparison in order to 

assess the margin available for further improvement. Lastly, we recognize some limitations of the 

existing solutions and identify possible directions for future research. 

Throughout the survey, upper-case bold type, lower-case bold type and regular type are used 
for matrices, vectors, and scalars, respectively. Rn is used to denote the n-dimensional real Euclidean 

space and the transpose operator is denoted by ()T. The normal (Gaussian) distribution with mean µ 

and variance σ2 is denoted by N (µ, σ2), the von Mises distribution with mean µ and concentration 

parameter κ is denoted by VM(µ, κ), while the uniform distribution on the interval [a, b] is denoted by 

U [a, b]. For any matrix M, its trace is denoted by tr (M). The designation diag(v) denotes a square 

diagonal matrix in which the elements of vector v form the main diagonal of the matrix, and the 

elements outside the main diagonal are zero. The N-dimensional identity matrix is denoted by I N 

and the R × C matrix of all zeros by 0R×C (√i f   no ambiguity can occur, subscripts are omitted).  v  
denotes the vector norm defined by  v  = vT v, where v ∈ Rn is a column vector. For a matrix A, 

Ar,c denotes the (r, c)-th entry of A. The cardinality (the number of elements) of a set is denoted by 

| • | and the statistical expectation of the argument as E(•). 
The remainder of this survey is organized as follows. In Section 2, we introduce the problem 

of distributed target localization in a generic framework, and we provide details about the main 

performance metrics often used in the literature. We also summarize the main sources of errors for the 

considered radio measurements. Section 3 presents a set of existing statistical-based estimators that 

are available to solve the considered problem. This section summarizes the main ideas behind each 

of the existing solutions, without a rigorous formal analysis. In Section 4, we offer a set of results in 

order to give an intuition to the reader about the performance of each of the existing solution from 

both computational complexity and localization accuracy points of view. Lastly, Section 5 concludes 

the survey and identifies possible future research directions regarding the problem of interest. 

2. RSS-AOA Distributed Localization Problem 

Future networks are expected to be composed of heterogeneous devices. Here, we use a generic 

term, nodes, to denote (any kind of) these devices. Note that wireless localization systems typically 

assume the presence of some reference nodes (usually called anchors or landmarks) deployed at fixed 

known locations (or equipped with GNSS receivers to determine their locations) and one or more 

nodes with a location one desires to determine (often referred to as targets or agents). Across the 

literature, the used terminology is not universal, and it frequently depends on the deployed technology. 

For instance, in cellular networks, the term base station is employed for anchors, whereas the term 

mobile station is utilized for a target node (the term user equipment is frequently used in the literature, 

as well) [33]. 

In general, the solution to localization problem comprises two phases: collecting measurements 

and exploiting them together with some known reference points to estimate target locations [34]. In the 

former phase, nodes communicate between themselves in order to acquire (radio) measurements. 

Based on the type of communication, we here distinguish two types of networks: non-cooperative 

(targets communicate with anchors exclusively) and cooperative (targets communicate with any nodes 

within their communication range), as illustrated in Figure 2. While in non-cooperative networks 

one takes advantage of known locations of anchors, which minimizes the error propagation due to 

localization inaccuracy, in many applications the number of anchors is scarce, and due to limited 

resources of nodes (e.g., battery life), only some of them can establish direct communication with 

anchors; hence, node cooperation is required in order to determine locations of all targets. It is well 
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known that node cooperation can bring advantages and lead to better decisions, especially when 

connectivity in the network is limited [35–37]. 

 

(a) Non-cooperative network (b) Cooperative network 

Figure 2. Illustration of different network types based on the type of communication. 

 

The most frequent radio measurement techniques utilized in practice are time (difference) of 

arrival, round trip time, phase of arrival, received signal strength (RSS) and angle of arrival (AOA). 

Moreover, the notion of hybrid system in which two (or more) measurements are integrated has 

gained much popularity lately [4,7,12,38]. Even though it is intuitive that more information should 

lead to better localization accuracy, one should note that joining any two measurements does not 

necessarily bring advantage in every scenario [12,39]. In the latter phase, the measured quantities are 

converted into distance or direction estimates, which combined with some known reference locations 

are processed to determine locations of interest. 

Depending on where the information processing is occurring, we discern two types of networks: 

centralized (assumes existence of a sink or a central node (CN) in the network which collects all 

measurements gathered in the network and executes all information processing) and decentralized 

or distributed (each target node collects measurements from its direct neighbors and executes all 

information processing by itself, usually in an iterative fashion), as illustrated in Figure 3. Both types 

of networks have their pros and cons: the centralized ones are more stable, but their computational 

burden becomes too costly as the number of nodes in the network increases, whereas the computational 

cost in distributed networks depends only on the size of local neighborhood of a target, but distributed 

processing often requires iterations which might disseminate localization errors across the entire 

network [40]. Here, we will concentrate on the distributed cooperative networks exclusively, 

both because in 5G networks we are expected to deal with networks with a large number of nodes, 

and because some of them might not wish to reveal their private content (e.g., their objective functions) 

to other nodes. 
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(a) Cooperative centralized network (b) Cooperative distributed network 

Figure 3. Illustration of different network types based on the type of processing. CN = central node. 

2.1. Problem Statement 

Let us consider a radio localization system consisting of M + N nodes (M of which are targets 

and N anchors, with preferably N   M), where their true locations are denoted by xi ∈ Rq, 

i = 1,. . . , M, and aj ∈ Rq, j = M + 1, . . . , M + N, respectively, with q = 2 or 3. One can view 

such a system as a connected graph G(V, S), with |V| = N + M vertices and a set of edges, S. 

Thus, we can also define the set of all targets, f = {i : i = 1, . . . , N}, as well as the set of all 

anchors, A = j j = N + 1, . . . , N + M , where it follows that V = f ∪ A. Due to limited energy 

constraints, it is assumed that nodes have constrained communication range. If two nodes, i and j, 

are within the communication range of each other, they can interact, i.e., there is an edge between 

them, S = 
n
(i, j) :  xi — sj  ≤ R, i, j ∈ V

,
, with sj = xj, if the j ∈

n 
f and  sj = aj, if the j ∈ A. 

and SA = (i, j) :  xi — aj  ≤ R, i ∈ f , j ∈ A . Lastly, let us define the neighborhood of the i-th 

target node as Si = j : (i, j) ∈ S . The localization system of interest in a 2-dimensional space is 

illustrated in Figure 4, where the distance and direction information are extracted from RSS and AOA 
measurements, respectively. 

 

Figure 4. Illustration of the considered model in 2-dimensional space. 

RSS is defined as the voltage level measured by a receiver’s RSS indicator circuit. It is often 

equivalent to measured power, i.e., the squared magnitude of the signal strength. In free-space, 

signal power decays proportionally to d—2, where d is the distance between a transmitter and a 

receiver. However, in practical applications the environment in which the signals propagate is not 

free-space, and an obstructed channel decays proportionally to dγ instead, where γ is the path loss 
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exponent (PLE) which indicates the rate at which the received strength decreases with distance [41]. 

Typically, the RSS sensed by the i-th node related to the transmission of the j-th node [42] (Ch. 3), 

[43,44], is defined as 

 

Pij = P0 — 10γ log 
dij 

10 
d0 

+ nij, ∀(i, j) ∈ SA ∪ Sf , i /= j, (1) 

where P0 is the reference RSS measured at a short reference distance d0 (d0 ≤ dij), dij is the distance 

between nodes i and j, and nij is the log-normal shadowing term modeled as a zero-mean Gaussian 

random variable with variance σ2 . Without loss of generality, it is assumed here that RSS observations 

between target nodes are symmetric, i.e., Pij = Pji. 

Two common ways to measure AOA are by employing antenna arrays and by using directional 

antennas. The former method is based on the so-called array signal processing techniques at sensor 

nodes. In this method, the AOA is estimated from the differences in the arrival times of a received signal 

at each of the array elements. The latter method estimates AOA based on the RSS ratio between two 

(or more) directional antennas installed on a node, as illustrated in Figure 5. Usually, two directional 

antennas are pointed in different directions so that their main beams overlap, and the overlap is used 

to estimate the AOA from the ratio of their individual RSS values [41]. The AOA can also be estimated 

from RSS measurements by employing electronically steerable parasitic array radiator antennas [45] or 

by rotating a directional antenna at the receiving end [46], or even by using video cameras [47]. It is 

also worth mentioning that some recent works estimate the angle by exploiting the known network 

topology, rather than installing any additional hardware at the receiving end [48]. Furthermore, 

phase of the received signal can play a significant role in the direction of arrival estimation [49,50]. 

 
 
 

 
RSS2 

 

 

 

RSS1 

 

 

 

 

Figure 5. Illustration of angle of arrival (AOA) estimation process based on the received signal strength 

(RSS) ratio, RSS1/RSS2, between two directional antennas. 

From geometry, azimuth angle measurements (at anchor nodes) [15,46,51–53] can be modeled as 

ϕij = arctan

 
xi2 — aj2 

! 

+ mij, ∀(i, j) ∈ S , (2) 

 

where xkl and akl denote, respectively, the l-th coordinate of k-th target and anchor node, and mij is the 

measurement error of the azimuth angle, modeled as a zero-mean von Mises random variable with 

the concentration parameter κmij ∈ [0, ∞), i.e., mij ~ VM(0, κmij ). The von Mises distribution can be 

seen as a circular analogue of the Normal distribution. There is a close connection between the mean 

direction and the concentration parameters of the von Mises distribution and the mean and variance 

of the Normal one [54,55]. 
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In order to simplify the notation, we define P = [Pij]T, ϕ = [ϕi
A

j ]
T, X = [x1, . . . , xM], (X ∈ R2×M), 

and S = SA ∪ Sf . Following the model in (1), the conditional probability density function (PDF) of 
RSS measurements is given by 

 

 

 

fP( 

 

P|X) =  ∏ 
(i,j)∈S 

 
1 

 e 
2 
nij 

d 2 

Pij —P0 +10γ log10 d0 
 

 

2σ2 

ij . (3) 

In a similar manner, according to the model in (2), the conditional PDF of AOA measurements can be 

written as 
1 κ  uT  aj —xi  

fϕ
 
ϕ|X

 
= ∏ 

(i,j)∈SA 

 
 

2π I0(κmij ) 
e 

mij ij  xi —aj 
 , (4) 

where Ik(•) is the modified Bessel function of first kind of order k [54,55],  and uij = 
 

cos
  

ϕij

 
, sin

 
ϕij

  T 

is a unit vector. 

If one would maximize (3),(4), one would obtain the maximum likelihood (ML) estimator [56] 

(Chapter 7) of X. In distributed networks, the ML problem is actually split into M local ML estimators, 

which is then solved individually by each one of the target nodes, resorting only to measurements 

acquired from the target’s direct neighbors. Nonetheless, the ML estimator obviously implies 

dealing with highly non-convex problem, in which a closed-form solution is not directly attainable; 

hence, directly solving the RSS and AOA ML estimator might not be feasible in practice. Therefore, 

many researchers opt to tackle an approximation of the ML estimator instead. 

2.2. Performance Metrics 

In general, requirements and performance metrics depend on the application for which an 

estimator will be employed. In practice, some intrinsic uncertainties are always present in the system 

(such as measurement noise), which naturally lead to errors in the node’s location estimate. The location 

error of the i-th node is defined as ei = xi — x̂ i   , where x̂ i  is the estimated location of the true node’s 

location, xi. One can use this error to build a variety of statistics that can be utilized as performance 

metrics. One of the most popular in the localization literature is the root mean square error (RMSE), 

given by 

RMSE = 

r

E
 

e2
 
. 

However, in practical performance evaluation tests, the expectation is approximated by a set of Monte 

Carlo (Mc) trials. In addition, due to the consideration of M target nodes in the network, one can 

actually define the average RMSE (ARMSE) as 

ARMSE 

,
u
, 1 Mc M 

 x x̂   2, (5) 

 

where x̂ i j represents the estimate of the true j-th target location, xij, in the i-th Monte Carlo run. 

ARMSE can be thought of as accuracy, since it is the rate of the statistical deviation of the location 

estimate from its real location. 

In order to get a notion of how good the performance of an estimator actually is, it is useful 

to compare it against some benchmark. Theoretically, the best achievable performance is often 

bench-marked by the Cramér-Rao lower bound (CRLB) [56] (Chapter 3). If one defines the co-variance 

matrix C of an estimator, where the estimate is denoted by, for instance ŷ ,  with 

C = E
  

y — ŷ
  

y — ŷ
 T

 
, 

— 
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then we know that the covariance is bounded by 

C ≥ J—1, 

where J represents the Fisher information matrix (FIM) and A ≥ B means that the matrix A — B is 

non-negative definite. The interested reader can find the derivation of the CRLB for the considered 

localization problem in the Appendix A. 

The reason why ARMSE is the most widely used performance metric in the localization literature 

is the fact that it is the best finite-sample approximation of the standard error, which is usually the most 

desired optimality criterion in terms of errors. Obviously, the ARMSE might not capture completely 

the accuracy of an estimator, and one may opt to employ other performance metrics. These include 

localization error outage, cumulative distribution function of the localization error, average Euclidean 

error, geometric average error, etc. [57,58]. 

It should be noted that performance evaluation is never completely fair nor impartial. To some 

extent, this is owed to the fact that elementary metrics are not able to capture a complete picture of an 

estimator, while those that are more complete are too complex and are often biased due to subjective 

interpretations (for instance, a metric can be in favor of an estimator that implicitly tries to optimize 

this same metric) [57]. To prevent such issues, in general, one should choose a metric that is the most 

relevant for the intended application. 

2.3. Main Sources of Errors 

All terrestrial localization systems based on pair-wise measurements closely rely on the quality 

of the measurements. Therefore, the key objective in establishing reliable localization systems is to 

accurately model the main degrading effects of the channel through which the radio signals propagate. 

In many practical applications, the environment in which the propagation of the radio signals occurs 

consists of various stationary or mobile objects/people (obstructions) that impede line of sight between 

the transmitter and the receiver, and cause reflections of the signal. These factors severely aggravate 

the task of propagation modeling [41]. 

In general, range and direction measurements involved in the process of localization are affected 

by both time-varying errors and static, environment-dependent errors [59]. The former ones might 

occur due to additive noise and interference, and can be alleviated by averaging over several 

measurements in time. The latter ones are the product of physical arrangement of objects (such as walls 

and furniture) in a given surrounding in which the network is operating. Owing to unpredictability 

of the surrounding, both types of errors are unmanageable and are treated as random. Nevertheless, 

in a given environment in which objects are mostly stationary, environment-dependent errors will be 

largely constant over time. 

In practice, multipath signals and shadowing are the main causes of errors in RSS 

measurements [42,60]. The former sources of error occurs because of reflections, causing multiple 

copies of the signal (of various amplitudes and phases) to arrive at the receiving end. These signals 

can cause destructive and constructive interference, which might result in weak correlation of RSS 

with distance. The latter source of error are environment-dependent and are caused by attenuation of 

the received signal due to obstructions, since the signal penetrates or diffracts around. This type of 

errors are often referred to as medium-scale fading. 

Similar with RSS measurements, the main source of errors in AOA measurements is the multipath, 

although additive noise can also cause inaccuracies [41]. Essentially, at the receiving end, we desire 

to determine the direction of arrival of the signal coming from a direct path from the transmitting 

end. This can be challenging to achieve in multipath channels, since instead of finding the highest 

peak of the cross correlation, the receiver has to determine the first-arriving peak, because there is 

no guarantee that the direct-path signal will be the strongest of the arriving signals. Many multipath 

signals arrive instants after the direct-path signal, and they can obscure the location of the peak from 
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the direct-path signal. Furthermore, in some cases the direct-path signal can be considerably attenuated 

compared with its late-arriving multipath components, which might cause the receiver to overlook it 

completely [41]. 

3. Existing Methods 

In this section, we give a brief overview of the existing (state-of-the-art) distributed RSS-AOA 

localization algorithms, summarizing their main ideas without going into many technical details;  

we refer the interested reader to see all specific technical details in the respective works, cited below. 

3.1. Second-Order Cone Programming (SOCP) Method 

The authors in [61] studied the problem of distributed target localization based on integrating 

RSS (measured at all nodes) and AOA measurements (measured at anchor nodes exclusively) and 

proposed an algorithm based on convex optimization, namely SOCP. The main idea of the algorithm is 

based on deriving a relaxed version of the original problem by applying a sequence of second-order 

cone constraint relaxations of the form  Ax + b  ≤ cT x + d, where A ∈ Rk×n and x ∈ Rn is the 

optimization variable. This second order cone constraint is the same as requiring the affine function 

(Ax + b, cT x + d) to lie in the second-order cone in Rk+1 [62], which is illustrated in Figure 6. Once the 

relaxed, convex, problem is derived, it can be readily solved by off-the-shelf solvers, such as CVX [63], 

a MATLAB software for disciplined convex programming. In [61], it was assumed that network 

coloring scheme [40] was achievable in order to establish a working hierarchy between targets and 

avoid message collisions. 

 

Figure 6. Illustration of the second-order (Lorentz) cone in R3: L3 = 
n
(x, t) ∈ R2 × R :  x  ≤ t)

,
. 

 

Although convex problems are easily solved Today, their solution is sub-optimal due to problem 

relaxation, which might increase the set of feasible solutions, as illustrated in Figure 7. Therefore, 

the quality of their solutions depends on the tightness of the applied relaxations since, otherwise, 

one may end up with a solution from the expanded set that might be considerably far away from the 

true one. 

t 
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(a) Original, non-convex set of feasible solutions (b) Relaxed, convex set of feasible solutions 

Figure 7. Illustration of the process of convex relaxation. 

3.2. Linear Least Squares (LLS) Method 

In [38], the authors considered the problem of distributed target localization based on fused 

RSS and AOA measurements, with the main difference (in comparison with the problem studied 

in [61]) that they assumed that all nodes in the network are capable of measuring both RSS and AOA 

quantities. The authors in [38] proposed an algorithm based on LLS approach. LLS is a special subclass 

of convex optimization, where the objective function is of the form  Ax — b  2, and the solution is 

given in closed form as x = (AT A)—1 ATb. It is a standard approach in regression analysis, where the 

main idea is to give the best fit that minimizes the sum of squared residuals, where a residual is 

considered to be the difference between an observed value and the fitted one provided by the model, 

as illustrated in Figure 8. LLS requires the model to be linear, which is evidently not the case for RSS 

nor AOA. Nevertheless, rather than applying a sequence of approximations to the model, the authors 

in [38] cleverly took advantage of the geometry of the problem at hand. More precisely, for each of 

the anchors, they estimated the distance to a target of interest, and together with the measured AOA, 

obtained an estimate of the target location, much like the illustration shown in Figure 4. Of course, 

distance and angle estimates were employed, rather than their true values. It was considered that 

there exists some node synchronization protocol which allowed targets with direct edges to anchors 

to localize themselves first, after which they played a role of quasi-anchors (reference points with 

imperfectly known locations, also called helpers [64]) to help localize the targets with no direct link to 

anchors, iteratively. 
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Figure 8. Illustration of the least-squares fitting method. 

3.3. MCMC-MH Method 

The authors in [65] proposed a different approach based on Bayesian regression. Their approach 

is known as Markov chain Monte Carlo with Metropolis-Hastings (MCMC-MH) algorithm [66] 

(Chapter 6), [67] (Chapter 12). In such an approach, one is interested in sampling from a generic 

distribution, i.e., from the posterior distribution of a parameter, say θ, given its prior and likelihood, 

i.e., p(θ|y) =  p(θ)×p(y|θ) . This approach is often used when one knows how to write p(θ|y), but does 

not know how to generate a random number from this distribution (because it is too complex). Hence, 

one generates a sequence of values (θ(1), θ(2), . . . , θ(n)) in such a way that when n → ∞, we have 

that θ(n) ~ p(θ|y). The samples θ(n) can later be exploited to estimate, for instance, the mean of the 

posterior distribution. 

To better explain the main idea of MCMC-MH, we divide it into three parts. In the first part, 

the term Monte Carlo refers to generation of random numbers from a chosen distribution, called the 

proposal distribution. The proposal distribution is entirely up to the user, but is usually chosen as a 

Normal one with predefined mean and variance. The key idea of Monte Carlo approach is that the 

more generations are performed, the more similar the resulting density is with the proposal density. 

In the second part, one has a Markov chain that is a sequence of numbers, where each number is 

dependent on the previous one in the sequence. If one generates a sequence of numbers using Markov 

chain Monte Carlo method, the trace plot of the parameter of interest, θ, is often called a random 

walk. Finally, the Metropolis-Hastings algorithm is used to determine which generated values of θ to 

accept/reject. It is based on the proportion between the posterior probability of a newly generated 

value and the posterior probability of the previously accepted value, i.e., 
 

r(θ 

 

(new), 

 

θ(t—1) p(θ(new) y) 
) = 

p(θ(t—1)|y) 
= 

p(θ(new)) × p(y|θ(new)) 
. 

p(θ(t—1)) × p(y|θ(t—1)) 

One then calculates the acceptance probability of the new point as α(θ(new), θ(t—1)) = 

min r(θ(new), θ(t—1)), 1 . Finally, to check whether to accept/reject the new value, one draws a 

uniform random number and keeps θ(new) if the acceptance probability is greater then the uniform 

Data 
Fit 

f(
x)
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4: Draw: u ~ U [0, 1] 

 

random number and rejects θ(new) otherwise. A simplified pseudo-code of MCMC-MH algorithm is 

summarized in Algorithm 1 and is graphically illustrated in Figure 9. 
 

Algorithm 1 Summary of MCMC-MH algorithm 
 

1: Generate: θ(new) from a proposal distribution 

2: Calculate: r
 

θ(new), θ(t—1)

  

3: Calculate: α
  

θ(new), θ(t—1)

  

5: if u < α
 

θ(new), θ(t—1)

  
then 

6: θ(t) = θ(new) 

7: else 

8: θ(t) = θ(t—1) 

9: end if 

 

 

 


max 

 

 

 

 

 

 

 

 

 

 

 


min 

 

 

 

Figure 9. Illustration of the Markov chain Monte Carlo with Metropolis-Hastings 

(MCMC-MH) procedure. 

3.4. Generalized Trust Region Sub-Problem (GTRS) Method 

A geometric approach was presented in [68], where the authors considered that AOA 

measurements are acquired at anchor nodes, exclusively. They considered a multi-hop approach 

in order to form triangles in which a target node, xi, with a direct edge to an anchor node, aj, plays a 

role of a pivot and connects its target neighbor, xk, to the anchor, as illustrated in Figure 10. 

The procedure proposed in [68] can be explained in three steps. Firstly, all target nodes with 

direct edges towards anchor nodes are localized, by means of weighted central mass (WCM). In the 

second step, the localized target nodes were considered as quasi-anchors in order to localize the 

remaining target nodes. This was done by taking advantage of the network geometry in the formed 

triangles and applying the law of cosines, which led to straightforward formulation of the problem 

in a GTRS framework [69,70]. This type of problems has a very convenient characteristic, which is 

that, even though non-convex in general, one can determine an interval I on which the function 

 
Initial sample (()) 
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rejected 

Prior distribution p() 
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is monotonically decreasing [69]. Therefore, GTRS can be efficiently solved by merely a bisection 

procedure, as illustrated in Figure 11. Finally, in the last step of the algorithm, the authors performed a 

refinement step based on WCM, in which they exploited the estimated locations of the target nodes in 

the previous steps and the acquired angle and distance measurements/estimates. 
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Figure 10. Illustration of the geometric approach in [68] for a 2-hop case. 
 

Figure 11. Illustration of the generalized trust region sub-problem (GTRS) solved by a 

bisection procedure. 

 

 

An overview of the main characteristics of all described algorithms is given in Table 1, where the 

notations “noise STD” and “PT” are used to denote the noise standard deviation and node’s transmit 

power. Table 1 shows that all considered algorithms require that all nodes measure the RSS quantity, 

while some of the algorithms require that only anchor nodes measure the AOA quantity. It can also be 

seen from the table that SOCP is perhaps the most universal approach in terms of applicability, since it 

can be used for both cases of known and unknown PT, and does not require knowledge about noise 

STD. The remaining methods (at least in their original form) are only suitable for the case where PT is 

assumed known. Furthermore, some of them require knowledge about the noise STD, which might 
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jeopardize their localization accuracy in the case where this information is not perfectly known, as it 

will be shown in the following section. 

Table 1. Summary of the main characteristics of the considered algorithms. SOCP = second-order 

cone programming; LLS = linear least squares; MCMC-MH = Markov chain Monte Carlo with 

Metropolis-Hastings. 
 

Algorithm RSS AOA PT Noise STD 

SOCP All nodes Anchors Not known/Known Unknown 
LLS All nodes All nodes Known Known 

MCMC-MH All nodes All nodes Known Known 

GTRS All nodes Anchors Known Unknown 

 

 

4. Performance Analysis 

This section offers a set of numerical results with the objective to give the reader a better 

understanding of the performance of the considered approaches. The performance is analyzed 

from both computational complexity and localization accuracy point of view. Moreover, the results for 

average execution time of the algorithms are also included. 

4.1. Analysis of Computational Complexity 

Here, we analyze the worst-case computational complexity of an algorithm. This is achieved by 

considering a fully connected network (i.e., the total number of neighbors of each target is assumed 

to be |Si| = N + (M — 1), ∀i ∈ f ). In addition, the computational complexity of each algorithm 

is expressed as a function of the dominating terms (the smaller terms are disregarded), written as 

a function of |Si|. The results of the considered algorithms are given in Table 2, where Smax, Cmax, 

and Tmax are used to denote the maximum number of steps allowed in the bisection procedure in [68], 

the number of generated candidates and the number of iterations in [65], respectively. Furthermore, 

we also present the execution time of the considered algorithms, which is calculated as an average 

execution time per target to localize itself in the scenario where N = 15, M = 50, R = 10 m in 

Mc = 100 runs. The simulations were performed on the Intel(R)Core(TM) i7-4710HQ CPU with 

2.50 GHz and 16 GB RAM. 

Table 2. Analysis of computational complexity and average execution time. 
 

Algorithm Complexity Time (sec) 

SOCP O
 

|Si |
3.5

 
0.66 

LLS 

MCMC-MH O 
C 

O
 
|
T
Si |

 

× |S | 
m ax × max   i 

0.004 
1.2 

One can see from Table 2 that the computational complexity of distributed algorithms depends 

mainly of the size of local neighborhood of a target, rather than on the size of the whole network (which 

is a characteristic of centralized ones). Furthermore, Table 2 exhibits that computational complexities 

of the SOCP approach in [61] and the MCMC-MH approach in [65] are the most burdensome ones. 

Although the complexity of MCMC-MH is actually linear in |Si|, its execution time is higher by far than 

those of LLS and GTRS, and even that of SOCP. This can be explained by the fact that a high number of 

candidates is generated and evaluated in every step of MCMC-MH procedure, which even though not 

especially intensive in terms of computational cost, is very time-consuming as the number of candidates 

increases. Finally, one can see that LLS and GTRS approaches have linear computational complexity 

 GTRS O Smax × |Si | 0.005  
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in |Si| and their time execution confirms that they might be suitable for real-time implementation, 

despite the fact that GTRS requires some iterations in the bisection procedure to reach its final solution. 

4.2. Analysis of Localization Accuracy 

In this section, a set of simulation results are presented in order to evaluate the performance of the 

existing algorithms in terms of localization accuracy. In the simulations presented here, all nodes were 

deployed completely randomly inside a square area with edge length B = 30 m in each Monte Carlo 

(Mc) run, forming connected networks. RSS and AOA measurements were generated according to (1) 

and (2). The reference distance was set to d0 = 1 m, the reference RSS to P0 = 20 dBm, and the PLE 

to γ = 3. The maximum number of steps in the bisection procedure was set to Smax = 30. Moreover, 

σnij = 10 dB and κij = 16.676 were adopted, where the latter parameter corresponds to the Normal 

standard deviation of σmij = 10 deg, since σ2  = 1 — I1(κij)/I0(κij) [54,55]. 
In this analysis, the following assumptions are made about the network: 

(1) The network is connected and does not vary during the computational period; 

(2) All nodes are suitably equipped to measure RSS of the received radio signal; 

(3) Some nodes (anchors) or possibly all of them are conveniently equipped to measure AOA of the 

received radio signal; 

(4) Working order of the nodes is synchronized. 

The first part of Assumption (1) guarantees that there is a path between nodes i and j, ∀i, j ∈ V, 

while the second part ensures that there is no topology variation (node/edge failure, node/edge 

addition or node movement) during the time required for information processing. Assumptions (2) 

and (3) are necessary in order for the nodes to acquire RSS and AOA measurements. While RSS 

measurements are cheap (because they do not require specialized hardware) and are thus widely 

available Today in almost all devices, in order to measure AOA quantity, typically directional antennas, 

antenna arrays or video cameras are required at the receiving end. Assumption (4) is made for 

the sake of simplicity, since node synchronization is a difficult problem to tackle in distributed 

networks, and it does not represent the main concern of this work. One possible way to achieve node 

synchronization could be by using network coloring scheme, as explained in [40,71,72], or any other 

medium access protocol. 

Figure 12 depicts ARMSE (m) versus N comparison for fixed M = 50 and R = 10 m. It clearly 

shows that the performance of all methods improve as N grows. This behavior is anticipated, since the 

quantity of reliable information in the network increases when more anchor nodes are added into 

the network. The figure shows that the performance of LLS is the best one. This is not a surprise, 

since LLS assumes that all nodes can measure AOA and it assumes perfect knowledge about the 

noise powers, which might not be feasible in practical scenarios where only a single measurement 

between pair of nodes is used for localization. Hence, in order to study the robustness of this method 

to imperfect knowledge about the noise power, the results for LLS when instead of the true value 

of σij (dB, deg), σ̂ i j  = 15 (dB, deg) is used are also included. It can be seen that LLS is sensitive to 

imperfections about this information. Finally, Figure 12 shows that there is still considerable room for 

further improvements, since there is a margin between CRLB (assuming that all nodes can measure 

the AOA quantity) and the existing methods. 
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Figure 12. Average root mean square error (ARMSE) (m) versus N: M = 50, R = 10 m, Mc = 1000. 

CRLB = Cramér-Rao lower bound (CRLB). 

Figure 13 depicts ARMSE (m) versus M comparison for fixed N = 15 and R = 10 m. It can be seen 

that the performance of LLS and MCMC-MH deteriorates and the performance of SOCP and GTRS 

meliorates slightly as M increases. This indicates that the latter two methods benefit from additional 

node cooperation achieved by introducing more target nodes into the network, while the latter ones 

are unable to take advantage of this additional cooperation. 
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Figure 13. ARMSE (m) versus M: N = 15, R = 10 m, Mc = 1000. 

Figure 14 depicts ARMSE (m) versus R (m) comparison for fixed N = 15 and M = 50. One can see 

from the figure that LLS and GTRS methods are biased for small R (m), since they outperform CRLB in 

this setting. Furthermore, even though it is intuitive that all methods improve as R (m) is increased, 

Figure 14 shows that this is not exactly the case. For instance, LLS and MCMC-MH methods worsen 

with the increase of R, while GTRS improves until a certain point after which it seems to get saturated 

and its performance worsens slightly after that point. The only method that continuously benefits 
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from the increase of R is SOCP. This can be explained to some extent by the fact that its computational 

complexity is the highest among the considered methods, which might give it more robustness when 

processing the additional information caused by increasing R. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14. ARMSE (m) versus R (m): N = 15, M = 50, Mc = 1000. 

5. Summary and Future Prospects 

This survey studied the problem of distributed target localization based on amalgamated RSS and 

AOA measurements. It provided formal mathematical derivation of the problem and presented a set 

of existing solutions. These state-of-the-art methods were studied from a signal processing perspective 

and their basic ideas were elaborated without focusing on extensive technical details characteristic to 

each one of the approaches. An analysis from both computational complexity and localization accuracy 

point of view was provided in order to give an intuition to the reader about the performance of the 

existing approaches. Likewise, the most commonly used theoretical lower bound (in the literature) 

on the localization accuracy was reviewed, as well, with the objective to evaluate the margin for 

further improvements. 

Some of the described approaches in this survey are computationally demanding and some 

require installing additional hardware (e.g., antenna arrays or directional antennas) on all nodes in 

the network. The former issue might restrict the applicability of such approaches in real-time or in 

resource-restrained networks (e.g., battery lives of nodes), at least for the time being. The latter issue 

raises the question of financial pay off for using such approaches in a wide variety of applications 

(e.g., in military or fire prevention applications where nodes are deployed in areas where they are 

likely to be damaged or destroyed). Both issues are equally important and should not be disregarded 

in the development of future solutions for target localization in general. 

The application in fire detection/prevention is very important in countries where the climate 

favors this hazard, such as Portugal. In the last 20 years, Portugal has been severely affected by large 

wildfires with dramatic consequences and casualties. Hence, it is urgent that the scientific community 

provides sound and efficient tools capable of improving decision making during wildfires crisis to 

minimize its negative consequences. A key component in decision support mechanisms for operational 

interventions is the information obtained within the network, which might be useless without knowing 

the location of nodes that acquired the information. Currently, the hardware used in forest surveillance 

is based on expensive video cameras installed on tall towers, complemented by meteorological sensors. 

There is no operational decision support system functioning in real-time fed by data provided by the 
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network, mostly because it requires significant resources (human and equipment), which are very 

limited during wildfires. 

In the following years, we expect to see a further boost in the research interest for target 

localization in general. Our reasoning is founded on the fact that we are living in a period of incessant 

and rapid development of novel technologies and introduction of new applications. For instance, 

employing localization technologies to complement and enhance vehicular and pedestrian systems 

in the fields of intelligent transportation systems, location-based services, robotics, and automated 

vehicles has already began. Similarly with the line of research presented here, a huge potential for 

future improvements of localization performance is expected to emerge from a fusion of information 

coming from already deployed (or novel) infrastructures (e.g., signals of opportunity), as well as the 

use of crowd sensing, owing to the widespread use of smartphones today. 

The forthcoming technologies (5G and IoT) will continue attracting the research interest towards 

distributed target localization without a doubt. It is expected that the IoT will continue nourishing the 

growth of networks in their size and their dynamics. Due to the augmented network size and node 

mobility, implementation of localization algorithms in a distributed manner will become a requirement 

for many practical settings, like smart buildings and smart cities. As a direct consequence, this will 

stimulate researchers to develop novel signal processing approaches for efficient (accurate and fast) 

distributed localization solutions. Furthermore, we expect that all these activities will require some 

level of security; hence, we expect that secure localization (localization in the presence of one or 

more malicious/corrupted nodes) will attract many research interest in the upcoming years. This is 

because today’s localization systems are susceptible to location spoofing, where devices can deceive 

other devices with regards to their own locations or can manipulate the measured locations of other 

devices [73]. 

Finally, we saw that node cooperation does not bring benefit by default for any of the considered 

estimators (e.g., when M and/or R (m) is increased). From the localization accuracy perspective, 

this result is very important since it indicates that there is still room for improvements, as it was also 

confirmed by comparing the methods against the theoretical bound. Essentially, this might imply that 

unlimited node cooperation is not the solution for the localization problem at hand, or simply that one 

needs to come up with a better way to exploit the additional information due to node cooperation in 

order to benefit from it. 
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Appendix A. CRLB Derivation for RSS-AOA Localization 

In estimation theory and statistics, the CRLB gives a lower bound on the variance of unbiased 

estimators of a deterministic (fixed, though unknown) parameter [56] (Chapter 3). Loosely speaking, 

the bound states that the variance of any unbiased estimator is at least as high as the inverse of the 

FIM. Thus, the CRLB is a reference point against which the performance of unbiased estimators can 

be analyzed. 

According to the definition [56] (Chapter 3), the variance of any unbiased localization estimator 

is lower bounded by var( X̂ ) ≥ trace
 

J—1(X)
 

, where J(X) is the 2M × 2M FIM. The elements of 

the FIM are defined as
 

J(X)
  

 

 

i,j = —E

 
∂2 ln p(θ|X)

 

, where i, j = 1, . . . , 2M, and p(θ|X) is the joint 

conditional probability density function of the observation vector θ = [PT, ϕT]T, given X. 
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Therefore, it follows that the FIM can be computed as: 

J(X) = 
 1  

∑ hijhT + 
 1  

∑ uijuT + 
 1  

∑ hikhT + 
 1  

∑ uikuT , 
2 
nij (i,j):j∈SAi 

ij 2 
mij (i,j):j∈SAi 

ij 2 
nik (i,k):k∈Sfi 

ik 2 ik 
mik (i,k):k∈Sfi 

where SAi = j : (i, j) ∈ SA and Sfi = j : (i, j) ∈ Sf are the anchor and target neighborhoods of 

the i-th target, 
10γd0 Ei(ETy — aj) 

hij = ρ — 
ln(10) 

i , 
ETy — aj 2 

Eie2(eT ETy — eT aj) — Eie1(eT ETy — eT aj) 
uij = 1  i 1 2  i 2 , 

(eT ETy — eT aj)2 + (eT ETy — eT aj)2 

h 
 10γd0  (Ei — Ek)(ETy — ETy) 

ik = ρ — 
ln 10 i k T T 2 

( ) Ei y — Ek y 

u 
(Ei — Ek)(e2(eT ETy — eT ETy) — e1(eT ETy — eT ETy))

, ik = 1 i 1  k T  T T  T 2 i 2  k T  T T 

(e1 Ei y — e1 Ek y)2 + (e2 Ei y — eT Ek y)2 

Ei = [e2i—1, e2i], with ei representing the i-th column of the identity matrix I2M, and e1 = [1, 0]T, 

e2 = [0, 1]T. 
Therefore, the CRLB for the estimate of the target locations is computed as: 

 

CRLB = trace
  

J—1(X)
 

. 
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