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Abstract: Radiation frost happens frequently in the Yangtze River Delta region, which causes high 

economic loss in agriculture industry. It occurs because of heat losses from the atmosphere, plant 

and soil in the form of radiant energy, which is strongly associated with micrometeorological 

characteristics. Multidimensional and nonlinear micrometeorological data enhances the difficulty in 

predicting the radiation frost. Support vector machines (SVMs), a type of algorithms, can be supervised 

learning which widely be employed for classification or regression problems in research of precision 

agriculture. This paper is the first attempt of using SVMs to build prediction models for radiation frost. 

Thirty-two kinds of micrometeorological parameters, such as daily mean temperature at six heights 

(Tmean0.5, Tmean1.5, Tmean2.0, Tmean3.0, Tmean4.5 and Tmean6.0), daily maximum and minimum temperatures 

at six heights (Tmax0.5, Tmax1.5, Tmax2.0, Tmax3.0, Tmax4.5 and Tmax6.0, and Tmin0.5, Tmin1.5, Tmin2.0, Tmin3.0, 

Tmin4.5 and Tmin6.0), daily mean relative humidity at six heights (RH0.5, RH1.5, RH2.0, RH3.0, RH4.5 and 

RH6.0), net radiation (Rn), downward short-wave radiation (Rsd), downward long-wave radiation 

(Rld), upward long-wave radiation (Rlu), upward short-wave radiation (Rsu), soil temperature (Tsoil) 

and soil heat flux (G) and daily average wind speed (u) were collected from November 2016 to 

July 2018. Six combinations inputs were used as the basis dataset for testing and training. Three 

types of kernel functions, such as linear kernel, radial basis function kernel and polynomial kernel 

function were used to develop SVMs models. Five-fold cross validation was conducted for model 

fitting on training dataset to alleviate over-fitting and make prediction results more reliable. The 

results showed that an SVM with the radial basis function kernel (SVM-BRF) model with all the 32 

micrometeorological data obtained high prediction accuracy in training and testing sets. When the 

single type of data (temperature, humidity and radiation data) was used for the SVM without any 

functions, prediction accuracy was better than that with functions. The SVM-BRF model had the 

best prediction accuracy when using the multidimensional and nonlinear micrometeorological data. 

Considering the complexity level of the model and the accuracy of prediction, micrometeorological 

data at canopy height with the SVM-BRF model has been recommended for radiation frost 

prediction in Yangtze River Delta and probably could be applied elsewhere with the similar terrains 

and micro-climates. 
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1. Introduction 

Radiation frosts happen frequently in the middle and lower reaches of the Yangtze River, China, 

leading to huge losses of famous tea production [1,2]. Generally, radiation frost occurs at the specific 

meteorological characteristics with a clear and calm sky, and a high relative humidity. During a 

typical frost night, heat in the form radiant energy, is easily lost from the underlying surface to the 

sky. Under a clear night-time sky, there is much more heat radiated out from the surface than received 

which results in the decrease of air temperature [3,4]. A temperature inversion will form when the 

air temperature falls faster near the radiant surface. The sensible heat from the soil and air near the 

radiant surface is reduced, which causes a net loss of energy from surface. Based on the energy balance 

in the plant-soil-atmosphere system, sensible heat flux downwards from the air and upwards from 

the surface soil to replace the heat losses. Dew point temperature is the temperature at which water 

vapor condenses into liquid water [5]. Generally, relative humidity is a relative measurement of how 

humid the air is, the dewpoint temperature is an absolute measurement of how much water is in the air. 

When warm air contracts with a cooler surface, water vapor will condense. With the further decrease 

of air temperature to frost point, the water vapor will be frozen [4,6]. A light frost event will happen 

when the nighttime temperature is below 0 ◦C. A heavy frost occurs after a period of more than four 

consecutive hours of air temperature that is below −4 ◦C [4]. 

Several methods have been attempted to predict frost events in recent decades, but many involve 

the empirical relationship to the dewpoint temperature (Td). Saenko pointed that frost may happen 

when the Td is less than 6 ◦C, and more likely to happen as it is below 0 ◦C in Victoria [7]. In Canada 

the nocturnal minimum temperature is deduced as equal to (Tmax + Td)/2 minus a correction parameter 

related to the wind speed and cloudiness. Tmax is the highest temperature in the previous day (FAO). 

However, radiation frost is caused by kinds of specific and complicated meteorological conditions. 

Simply using the dew temperature to present the radiation frost has certain limitation and inaccuracy. 

Generally, frost warning systems and models are developed using meteorological variables, such as 

maximum and minimum temperatures, dewpoint temperature, cloud cover, precipitation and average 

wind speed [8–10]. Hu et al. [11] statistically analyzed the historical data of late frost occurrence in 

Zhenjiang of China between March and April from 1979 to 2008 and established the prediction models 

based on the seasonal disasters grey method. The results found that grey prediction model had the 

excellent accuracy with the ratio between posteriori errors less than 0.35 and the model accuracy above 

0.95. However, the model was limited to be used for predicting the first and last frost occurrence dates. 

Lee et al. [12] attempted using logistic regression (LR) and decision tree (DT) techniques to develop 

the prediction models for spring frosts in Korea. The average values of hit rate and probability of 

detection were all high in both of LR and DT. However, only eight limited meteorological variables, 

such as the minimum temperature, difference between maximum and minimum temperature, grass 

minimum temperature, dewpoint temperature, cloud cover, mean relative humidity, minimum relative 

humidity and wind speed, were used as variables for the prediction models. It was not accurate 

because those models ignored the radiation meteorological data. The energy budget balance is 

closely associated with the radiation in a typical radiation frost night. Radiated energy is the main 

form of the energy absorbed and lost in the eco-system. LR and DT techniques indeed had a good 

predict accuracy with simply and linearly data. However, the formation of radiation frost is closely 

related to the complex micrometeorological data, especially the microclimate around the canopy. 

Meanwhile, multidimensional and nonlinear microgeological data increase the difficulty of radiation 

frost prediction. 

The support vector machines (SVMs) are originally developed for pattern recognition. It is a new 

general learning method based on the statistical theory of solving the quadratic optimization problem 

and seeking the global optimal solution [13]. SVMs are the algorithms that can be supervised learning, 

which mainly are employed for classification or regression problems. Kernel trick technique is used to 

transform the data. Based on these transformations, an optimal boundary is found out between these 

possible outputs [14]. Generally, micrometeorological data in a frost night are multidimensional and 
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nonlinear, which increase the difficulty in prediction. In recent years, it has been applied in solving 

the issues of classification, function approximation and prediction related to precision agriculture, 

agricultural water management and bio-meteorology [14–19]. Its successfully application in precision 

agriculture makes frost prediction reliable. 

While, the SVMs employed in frost prediction have not been completely attempted yet. This 

paper is the first attempt to evaluate the possibility of using the SVMs to predict the radiation frost 

in the Yangtze River region. Therefore, the objective of this study is using SVMs to develop the 

prediction models with different input combinations of meteorological data. The specific tasks are 

(1) to determine the effects of various input combinations of meteorological data for radiation frost 

prediction, (2) to develop the SVMs models based on three kinds kernel functions (linear function, 

radial basis function and polynomial function) for frost protection using the properly meteorological 

data and (3) to compare the prediction accuracy of four SVMs models and determine the optimal 

model and most related micrometeorological parameters in predicting the radiation frost. 

2. Materials and Methods 

2.1. Experimental Site 

The experimental site was located at Danyang Maichun Tea Farm, a common tea farm in the 

Middle-Lower Yangtze River region of east China (Figure 1). It is a typical hilly topography with 

the average altitude of 18.5 m. The mean annual precipitation is 1029.1 mm and the annual mean 

temperature is 15.5 ◦C, which belongs to the typical moderate sub-tropical climate. Radiation frosts 

frequently happened in the late autumn, winter and early spring [1,2]. 

 

Figure 1. Study site. 

2.2. Micro-Meteorological Data Collection and Analysis 

Thirty-one types of micrometeorological data were collected by the scientific weather station 

(Figure 1). Net radiation (Rn), downward short-wave radiation (Rsd), downward long-wave radiation 

(Rld), upward long-wave radiation (Rlu) and upward short-wave radiation (Rsu) was measured by a 

four component radiometer (CNR4, Kipp and Zonen, Delft, Netherlands) at the height of 2.5 m. Air 

temperature and humidity at the height of 0.5 m, 1.0 m, 1.5 m, 3.0 m, 4.0 m and 6.0 m were measured 

with six HC2S3 (Campbell Scientific, Logan, UT, USA), respectively. Soil temperature (Tsoil) was 

measured by Hydra Probe II at the depth of 5.0 cm (Stevens, Portland, OR, USA). Soil heat flux (G) 

was measured by HFP01SC (Hukseflux, Delft, Netherlands). Wind speed (u) was measured by 2-D 

sonic wind sensor (Wind Sonic C1-L, Campbell Scientific, Logan, UT, USA) at the height of 2.5 m. Soil 

heat flux plates was placed at the depth of 5 cm. All sensors have been calibrated before carrying 



 

American Journal of Applied Sciences Volume 15, Issue 1, 2025 

k 

, 

, 

 

out the experiment. CR3000 data loggers (Campbell Scientific, Logan, UT, USA) were used to collect 

the meteorological data and the data sampling frequency of all the sensors is 0.5 Hz. The collection 

interval of all the sensors was 10 min. Continuous and long-time series meteorological data were 

collected from 10 November 2016 to 19 July 2018. They were micro-daily maximum/minimum air 

temperature at five heights (Tmean0.5, Tmean1.5, Tmean2.0, Tmean3.0, Tmean4.5 and Tmean6.0), daily maximum 

and minimum temperature at six heights (Tmax0.5, Tmax1.5, Tmax2.0, Tmax3.0,Tmax4.5 and Tmax6.0, and Tmin0.5, 

Tmin1.5, Tmin2.0, Tmin3.0, Tmin4.5 and Tmin6.0), daily mean relative humidity at six heights (RH0.5, RH1.5, 

RH2.0, RH3.0, RH4.5 and RH6.0) and daily mean Tsoil, G, Rn, Rsd Rld, Rlu Rsu and u. Ninety-seven frost 

events were recorded in the experimental tea farm during the experiment. 

2.3. Support Vector Machines 

The SVMs are widely applied in the research related to classification, regression and novelty 

detection. They can be used to estimate the regression combined with different kernel functions. In 

the problems of classification, the SVMs act as the binary classification, defined as the largest linear 

classifier in the feature space [14]. Learning strategy of the SVMs is interval maximization, which can 

be converted into a solution of a convex quadratic programming problem. A kernel function is used to 

transform the training data from non-linear decision surface to the linear equation in a higher number 

of dimensions. Linear discriminant functions provide efficient 2-class classifiers if class features can 

be separated by a linear decision surface [20]. In the prediction process, frost events can be seen as a 

typical binary classification problem: frost occurs and frost does not occur. 

In case of a set of dataset with k samples are linearly inseparable, a maximum margin hyperplane 

can be calculated by the SVMs with the following equation. 

minΦ(w) = 
1 

wT·w + C
, 

ξi, (1) 
2 

i=1 

where, C is positive, a penalty factor for controlling the tradeoff between minimization error of the 

classification and maximization of the margin. w and ξi is the weight vector and slack variable. In 

this research, C is 1.0. w and ξi will be optimized in the training processing. Generally, if the training 

point is no longer satisfies the constraint of yi ((w·xi) + b) ≥ 1 and ξi ≥ 1 will be introduced to make the 

decision of the constraint for: 

yi(w·xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . . . ., k, (2) 

where, xi and b is the input vector and the bias; w·xi + b is the distance between xi and the hyperplane. 

The Lagrange multipliers is used to determine the optimal decision surface and finally the classification 

function is shown as, 

k n k 

L = 
1 

wT·w + C
, 

ξi − 
, 
αi[yi(w·xi + b) + ξi − 1] − 

, 
βiξi, (3) 

2 
i=1 i=1 i=1 

where, α and β is Lagrange multipliers. Since ∂L = 0, ∂L = 0 and ∂L = 0, the Equation (3) can be 

derived into the Equations (4) and (5): 
∂b ∂w ∂ξ 

 

k 

yiαi = 0, (4) 
i=1 

k 

w∗ = yiαixi, (5) 
i=1 
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f (x) = 
, 
α yiK(xi, x) + b , (8) 

 

where, w* is the normal vector for the optimal hyperplane; C ≥ αi ≥ 0, i = 1, 2, 3, . . . , k. So, the 

classification function is shown as, 

k 

f (x) = yiαi(x·xi) + b. (6) 
i=1 

In case of a set of dataset with k samples are nonlinear separable, samples are mapped to the 

high-dimensional feature space and become a linear case through the nonlinear mapping function 

Φ(xi). The w* can be described as following: 
 

k 

w∗ = yiαixiΦ(xi), (7) 
i=1 

where, Φ(xi) maps the eigenvectors to higher-dimensional eigenspaces. So, the classification function 

is shown as, 
n 

∗ ∗ 
i 

i=1 

where, b* and K(xi, x) is the bias and the kernel function, respectively. 

The kernel functions implicitly map the eigenvectors to the higher-dimensional eigenspaces by 

the nonlinear transformation to which it is associated, making the system learning samples linearly 

separable. The most common kernel functions are linear kernel function, polynomial kernel function 

and radial basis function kernel (BRF), which is defined as follows, respectively. 

K(xi, x) = (xi·x), (9) 

K(xi, x) = (xi·x + 1)d, (10) 
" 

x − xi 2 
# 

K(xi, x) = exp − 
σ2 

, (11) 

where, d is the nature number. σ is a smoothing variate that determines the influence each of the points. 

In this study, 1/σ2 was set to 0.7 [21]. 

2.4. Input Combinations and K-Fold Cross-Validation 

K-fold cross-validation is normally used for estimating the skill of a machine learning model on 

unseen data [22]. When using machine learning to develop the models, the data are usually divided 

into training set and testing set. Testing set is the independent data from training set. In the process of 

evaluation of the final model, over-fitting is the main problem. It means the model is well matched with 

the training set, but not well for the testing set. If the test data is used to adjust the model parameters, 

it is equivalent to the information of part of the test data is known during the training, which will affect 

the accuracy of the final evaluation result. A common practice is to separate the training data into 

validation data to evaluate the training effect of the model. Validation data is random selected from 

training set, but does not participate in training, so that the matching degree of the model to the data 

outside the training set can be evaluated objectively. 

In this research, five-folds cross-validation was used to improve the prediction accuracy of the 

SVMs models. As shown in Table 1, six input combinations were selected in this study to evaluate the 

performance in different meteorological parameters on frost prediction: (1) Tmax, Tmin and Tmean with six 

heights; (2) RH with six heights (3) Rn, Rlu, Rsu, Rld and Rsd; (4) Tsoil and G; (5) the micro-meteorological 

data at the canopy height (Tmean1.5, Tmin1.5, Tmax1.5, RH1.5, Rn and u) and (6) all the 32 micrometeorological 

parameters. Python (version 3.7.2) was used to write the program codes for developing SVM models. 
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The number of training set and testing set was 408 and 175, respectively. The number of frost nights in 

the training set and testing set was 60 and 37, respectively. 

Table 1. The inputs combinations of micrometeorological variables for different support vector machine 

(SVM) models. 
 

 

SVM with 

Linear Kernel 

Models 

SVM with Radial Basis 

Function Kernel 

 

 

rbf 

 

Input Combinations 

 
Tmean0.5, Tmean1.5, Tmean2.0, Tmean3.0, Tmean4.5, 

SVM1 SVM_linear1 SVM_BRF1 SVM_polynomial1 
Tmean6.0, Tmax0.5, Tmax1.5, Tmax2.0, Tmax3.0, 

Tmax4.5, Tmax6.0, Tmin0.5, Tmin1.5, Tmin2.0, Tmin3.0, 

Tmin4.5, Tmin6.0; 

SVM2 SVM_linear2 SVM_BRF2 SVM_polynomial2 RH0.5, RH1.5, RH2.0, RH3.0, RH4.5, RH6.0; 

SVM3 SVM_linear3 SVM_BRF3 SVM_polynomial3 Rn, Rsd, Rld, Rlu, Rsu; 

SVM4 SVM_linear4 SVM_BRF4 SVM_polynomial4  Tsoil, G; 

SVM5 SVM_linear5 SVM_BRF5 SVM_polynomial5  Tmean1.5, Tmin1.5, Tmax1.5, RH1.5, Rn, u; 

SVM6 SVM_linear6 SVM_BRF6 SVM_polynomial6 All the 32 micrometeorological parameters; 

3. Results and Discussion 

Various meteorological parameters used for different input combination are the crucial factor for 

prediction accuracy. The SVMs models with different input combinations showed different prediction 

accuracy. The results indicated that, when using all the 32 micrometeorological parameters, the 

prediction accuracy was the best by using the SVM-BRF model. The prediction accuracy of training set 

and testing set was 98.77% and 90.29%, respectively. However, when only using single type and linear 

data such as the temperature, humidity and radiation data, simple SVM without any functions showed 

highest prediction accuracies both of training and testing sets compared with the SVM-linear, SVM-BRF 

and SVM-polynomial models. As temperature data used for training, the prediction accuracy of 

training and testing set was 84.07% and 90.29%, respectively. For the humidity data, it was 84.07% and 

91.43%, respectively. For the radiation data, it was 81.37% and 92.00%, respectively. As the soil data 

such as Tsoil and G applied in the five SVMs models, the SVM-BRF model showed the best prediction 

accuracy compared with the other four models. The prediction accuracy of training and testing set 

was 80.88% and 90.29%, respectively (Figure 2). The accuracy of the test set was always a bit higher 

than that of the training set, which was most likely due to the problem of data distribution, that is, 

the distribution of the training set was inconsistent with that of the testing set. One of the reasons 

is the containing problems in the data distribution. The data of the testing set were included in the 

data of the training set. The other reason is the large intersection problem of the data distribution. 

That is because the non-intersection part of training data distribution is wider than the testing data 

distribution. Those two reasons both cause the data of the testing set to be simpler than that of the 

training set. Thus, the prediction accuracy of the testing set might also be higher than that of the 

training set. 

Frosts have been defined as advection frost and radiation frost [23]. Advection frosts happened 

frequently happen in a cold and windy weather, which is associated with large-scale and strong 

cold air with the temperature below 0 ◦C. Radiation frosts are caused by the radiant energy loss 

from the atmosphere, soil and plant ecosystem in the clear, no-wind nights. It will cause peculiar 

temperature inversions phenomenon [24,25]. Air temperature and air relative humidity are the most 

vital micrometeorological factors for the formation of the radiation frost [26]. In general, at a radiation 

frost night, the air relative humidity is normally higher than 90%. Dew-point temperature and air 

temperature are typically below 0 ◦C [27,28]. That is because high humidity air contacts with a cooler 

surface, water vapor will condense on the radiated surface. With further decrease of the air temperature 

to lower than the freezing point, frost will form on the surface [2,11]. There is a functional relationship 

between humidity and air temperature, they also changed with the heights with a polynomial function. 

Canopy of the plant is the most sensitive part for the freezing injury and frost damage [2,24,29]. Plant 

canopies intercept energy radiated from the land surface to the atmosphere and changes the air flow 

capacity as well. The micro-meteorological variables at the canopy height are a direct reflection of the 

Basic SVM 
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physiological characteristics of the crops, which is closely associated with the formation of the radiation 

frost. The result indicated that, when using Tmean1.5, Tmin1.5, Tmax1.5, RH1.5, Rn and u as the input 

combinations, the SVM-BRF model showed the highest prediction accuracy both in the training set 

and testing set compared to the other four models. The prediction accuracy of training set and testing 

set was 89.39% and 90.29%, respectively. The prediction results indicated the SVM-BRF model was 

best applied in the multidimensional and nonlinear micrometeorological data. The input combination 

with more parameters will improve the prediction accuracy of the SVMs models, but it will increase 

the complexity level and computation. 
 

Figure 2. Prediction accuracy of four SVM models with different input parameters. 
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4. Conclusions 

This study is the first attempt using SVMs to develop prediction models of radiation frost. SVMs 

models based on three kinds of kernel functions were developed for frost protection using limited six 

input combinations of meteorological data. Accuracies of prediction were compared to determine the 

optimal model and most related micrometeorological parameters in predicting the radiation frost. 

The prediction accuracy indicated that the SVM-BRF model was the best applied in the 

multidimensional and nonlinear micrometeorological data. Input combinations with more variables 

generally improve the prediction accuracy. Considering the complexity level and prediction accuracy, 

the canopy data with the SVM-BRF model has been recommended for radiation frost protection 

estimation radiation frost in the Yangtze River region and probably could be applied in elsewhere with 

the similar terrains and micro-climates around the world. 
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