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Abstract: The ubiquity of sound synthesizers has reshaped modern music production, and novel 

music genres are now sometimes even entirely defined by their use. However, the increasing 

complexity and number of parameters in modern synthesizers make them extremely hard to master. 

Hence, the development of methods allowing to easily create and explore with synthesizers is a crucial 

need. Recently, we introduced a novel formulation of audio synthesizer control based on learning 

an organized latent audio space of the synthesizer’s capabilities, while constructing an invertible 

mapping to the space of its parameters. We showed that this formulation allows to simultaneously 

address automatic parameters inference, macro-control learning, and audio-based preset exploration within a 

single model. We showed that this formulation can be efficiently addressed by relying on Variational 

Auto-Encoders (VAE) and Normalizing Flows (NF). In this paper, we extend our results by evaluating 

our proposal on larger sets of parameters and show its superiority in both parameter inference and 

audio reconstruction against various baseline models. Furthermore, we introduce disentangling flows, 

which allow to learn the invertible mapping between two separate latent spaces, while steering the 

organization of some latent dimensions to match target variation factors by splitting the objective as 

partial density evaluation. We show that the model disentangles the major factors of audio variations 

as latent dimensions, which can be directly used as macro-parameters. We also show that our model is 

able to learn semantic controls of a synthesizer, while smoothly mapping to its parameters. Finally, 

we introduce an open-source implementation of our models inside a real-time Max4Live device that 

is readily available to evaluate creative applications of our proposal. 

Keywords: audio synthesizer; normalizing flows; variational inference; music information retrieval; 

machine learning; probabilistic graphical models; generative models; creative AI 

 

 

1. Introduction 

Synthesizers are parametric systems able to generate audio signals ranging from musical 

instruments to entirely unheard-of sound textures. Since their commercial beginnings more than 

50 years ago, synthesizers have revolutionized music production, while becoming increasingly 

accessible, even to neophytes with no background in signal processing. 

While there exists a variety of sound synthesis types [1], all of these techniques require an extensive 

a priori knowledge to make the most out of a synthesizer possibilities. Hence, the main appeal of 

these systems (namely their versatility provided by large sets of parameters) also entails their major 

drawback. Indeed, the sheer combinatorics of parameter settings makes exploring all possibilities 
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to find an adequate sound a daunting and time-consuming task. Furthermore, there exist highly 

non-linear relationships between the parameters and the resulting audio. Unfortunately, no synthesizer 

provides intuitive controls related to perceptual and semantic properties of the generated audio. Hence, 

a method allowing an intuitive and creative exploration of sound synthesizers has become a crucial 

need, especially for non-expert users. 

A potential direction taken by synth manufacturers is to propose programmable macro-controls 

that allow to efficiently manipulate the generated sound qualities by controlling multiple parameters 

through a single knob. However, these need to be programmed manually, which still requires expert 

knowledge. Furthermore, no method has ever tried to tackle this macro-control learning task, as this 

objective appears unclear and depends on a variety of unknown factors. An alternative to manual 

parameters setting would be to infer the set of parameters that could best reproduce a given target 

sound. This task of parameters inference has been studied in the past years using various techniques, 

such as iterative relevance feedback on audio descriptors [2], Genetic Programming to directly grow 

modular synthesizers [3], or bi-directional LSTM with highway layers [4] to produce parameters 

approximation. Although these approaches might be appealing, they all share the same fundamental 

flaws that (i) though it is unlikely that a synthesizer can generate exactly any audio target, none 

explicitly model these limitations, (ii) they do not account for the non-linear relationships that exist 

between parameters and the corresponding synthesized audio, and (iii) none of these approaches allow 

for higher-level controls or interaction with audio synthesizers. Hence, no approach has succeeded 

in unveiling the true relationships between these auditory and parameters spaces. Hence, it appears 

mandatory to organize the parameters and audio capabilities of a given synthesizer in their respective 

spaces, while constructing an invertible mapping between these spaces in order to access a range of 

high-level interactions. This idea is depicted in Figure 1. 
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Figure 1. Universal synthesizer control. (a) Previous methods perform direct parameter inference from 

the audio, which is inherently limited by the non-differentiable synthesis operation and provides no 

higher-level form of control. (b) Our novel formulation states that we should first learn an organized 

and compressed latent space z of the synthesizer’s audio capabilities, while mapping it to the space v 

of its synthesis parameters. This provides a deeper understanding of the principal dimensions of audio 

variations in the synthesizer, and an access to higher-level interactions. 

The recent rise of generative models might provide an elegant solution to these questions. Indeed, 

amongst these models, the Variational Auto-Encoder (VAE) [5] aims to uncover the underlying structure 

of the data, by explicitly learning a latent space [5]. This space can be seen as a high-level representation, 

which aims to disentangle underlying variation factors and reveal interesting structural properties 

of the data [5,6]. VAEs address the limitations of control and analysis through this latent space, 

while being able to learn on small sets of examples. Furthermore, the recently proposed Normalizing 

(a) Transform Inference 
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Flows (NF) [7] also allow to model highly complex distributions in this latent space. Although the use 

of VAEs for audio applications has only been scarcely investigated, Esling et al. [8] recently proposed a 

perceptually regularized VAE that learns a space of audio signals aligned with perceptual ratings via a 

regularization loss. The resulting space exhibits an organization that is well aligned with perception. 

Hence, this model appears as a valid candidate to learn an organized audio space. 

Recently, we introduced a radically novel formulation of audio synthesizer control [9] by 

formalizing it as the general question of finding an invertible mapping between organized latent spaces, 

linking the audio space of a synthesizer’s capabilities to the space of its parameters. We provided 

a generic probabilistic formalization and showed that it allows to address simultaneously the tasks 

of parameter inference, macro-control learning, and audio-based preset exploration within a single model. 

To solve this new formulation, we proposed conditional regression flows, which map a latent space to 

any given target space, as depicted in Figure 2. Based on this formulation, parameter inference simply 

consisted of encoding the audio target to the latent audio space that is mapped to the parameter 

space. Interestingly, this bypasses the well-known blurriness issue in VAEs as we can generate directly 

with the synthesizer instead of the decoder. In this paper, we extend the evaluation of our proposal 

on larger sets of parameters against various baseline models and show its superiority in parameter 

inference and audio reconstruction. Furthermore, we discuss how our model is able to address the 

task of automatic macro-control learning that we introduced in Ref. [9] with this increased complexity. 

As the latent dimensions are continuous and map to the parameter space, they provide a natural way 

to learn the perceptually most significant macro-parameters. We show that these controls map to 

smooth, yet non-linear parameters evolution, while remaining perceptually continuous. Hence, this 

provides a way to learn the compressed and principal dimensions of macro-control in a synthesizer. 

Furthermore, as our mapping is invertible, we can map synthesis parameters back to the audio space. 

This allows intuitive audio-based preset exploration, where exploring the neighborhood of a preset 

encoded in the audio space yields similarly sounding patches, yet with largely different parameters. 

In this paper, we further propose disentangling flows to steer the organization of some of the latent 

dimensions to match given target distributions. We evaluate the ability of our model to learn these 

semantic controls by explicitly targeting disentanglement in the latent space of the semantic tags 

associated to synthesizer presets. We show that, although the model learns to separate the semantic 

distributions, the corresponding controls are not easily interpretable. Finally, we introduce a real-time 

implementation of our model in Ableton Live and discuss its potential use in creative applications (All 

code, supplementary figures, results, and the real-time Max4Live plugin are available as open-source 

packages on a supporting webpage: https://acids-ircam.github.io/flow_synthesizer/). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Universal synthesizer control. We learn an organized latent audio space z of a synthesizer 

capabilities with a Variational Auto-Encoder (VAE) parameterized with Normalizing Flow (NF). This 

space maps to the parameter space v through our proposed regression flow and can be further organized 

with metadata targets t. This provides sampling and invertible mapping between different spaces. 
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2. State-Of-Art 

2.1. Generative Models and Variational Auto-Encoders 

Generative models aim to understand a given set of input examples x ∈ Rdx by modeling the 

underlying probability distribution of the data p(x). To do so, we introduce latent variables defined 

in a lower-dimensional space z ∈ Rdz (dz dx). These variables can be seen as a higher-level 

representation that could have led to generate a given example. The complete model is then defined 

by the joint distribution p(x, z) = p(x|z)p(z). In order to obtain p(x), we would need to marginalize z 

from the joint probability as follows 

p(x) = 

∫ 

p(x | z)p(z)dz. (1) 

 
Unfortunately, as real-world data follow complex distributions, this formulation usually cannot be 

solved analytically. The idea of variational inference (VI) is to solve this problem through optimization by 

assuming a simpler approximate distribution qφ(z|x) ∈ Q from a family of parametric densities [10], 

where φ denotes the variational parameters that we can optimize. The goal of VI is to minimize the 

difference between this approximation and the real distribution, by minimizing the Kullback–Leibler 
(KL) divergence between these densities 

q∗
φ(z|x) = argminqφ (z|x)∈QDKL

 
qφ (z|x)  p (z|x)

 
. (2) 

However, our original problem is that we did not have a closed-form solution to the posterior 

p(z | x). By developing this KL divergence, re-arranging terms (the detailed development can be found 

in [5]) and introducing parametric distributions for the likelihood pθ (x | z) and prior pθ (z), we obtain 

log p(x) − DKL

 
qφ(z|x)  p(z|x)

 
= Ez

 
log p(x|z)

 
− DKL

 
qφ(z|x)  p(z)

 
. (3) 

This formulation describes the quantity we want to model log p(x) minus the error we make by 

using an approximate q instead of the true p. Therefore, we can optimize this alternative objective, 

called the evidence lower bound (ELBO), by optimizing the parameters φ and θ of the distributions 

Lθ,φ = E
 

log pθ (x|z)
 
− β · DKL

 
qφ(z|x)  pθ (z)

 
. (4) 

Intuitively, the ELBO minimizes the reconstruction error through the likelihood of the data given a 

latent log pθ (x|z), while regularizing the distribution qφ(z|x) to follow a given prior distribution pθ (z). 

We can see that this equation involves qφ(z|x) which encodes the data x into the latent representation z 

and a decoder pθ (x|z), which generates x given a z. This structure defines the Variational Auto-Encoder 

(VAE), where we can use parametric neural networks to model the encoding (qφ) and decoding (pθ) 

distributions. VAEs are powerful representation learning frameworks, while remaining simple and 

fast to learn without requiring large sets of examples [11]. 
However, the original formulation of the VAE entails several limitations. First, it has been shown 

that the KL divergence regularization can lead both to uninformative latent codes (also called posterior 

collapse) and variance over-estimation [12]. One way to alleviate this problem is to rely on the Maximum 

Mean Discrepancy (MMD) instead of the KL to regularize the latent space, leading to the WassersteinAE 

(WAE) model [13]. Second, one of the key aspect in the success of VI lies in the choice of the family 

of approximations. The simplest choice is the mean-field family where latent variables are mutually 

independent and parametrized by distinct variational parameters q(z) = ∏m  qj(zj). Although this 

provide an easy tool for analytical development, it might prove too simplistic when modeling complex 

data as this assumes pairwise independence among every latent axis. In order to alleviate this issue, 

normalizing flows [7] have been proposed by adding a sequence of invertible transformations to the 

latent variable, providing a more expressive inference process. 
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2.2. Normalizing Flows 

In order to transform a probability distribution, we can rely on the change of variable theorem. 
As we deal with probability distributions, we need to scale the transformed density so that it still sums 

to one, which is measured by the Jacobian of the transform. Formally, let z ∈ Rd be a random variable 

with distribution q(z) and f : Rd → Rd an invertible smooth mapping. We can use f to transform 

z ∼ q(z), so that the resulting random variable z′ = f (z) has the following probability distribution 

 
q(z′) = q(z) 

 
det 

 

∂ f −1  
= q(z) 

 
det 

 

∂ f −1 
  

 
(5) 

∂z′ 
 

∂z  

where the last equality is obtained through the inverse function theorem [7]. As we can see, this 

allows us to perform inference by relying on a more complicated (transformed) distribution q(z′), 

while still being able to keep the simplicity of a mathematical development based on q(z). Now, we 

can iteratively apply this reasoning and perform an arbitrary number of transforms to our original 

variable such that zk = f1 ◦ ... ◦ fk(z0), in order to obtain a final distribution zk ∼ qk(zk) given by 

 

−1 −1 
k ∂ f −1 

 
 

 

 

k 
= q0(z0) ∏ 

 
det ∂ fi 

−1 
  

 
 

i=1
 ∂zi−1

  

This series of transformations, called a normalizing flow [7], can turn a simple distribution into 

a complicated multimodal density. For practical use of these flows in inference, we need to define 

transforms whose Jacobian determinants are easy to compute. Interestingly, Auto-Regressive (AR) 

transforms fit this requirement as they lead to a triangular Jacobian matrix. Different types of AR flows 

were proposed such as Inverse AR Flows (IAF) [14] and Masked AR Flows (MAF) [15]. These flows allow 

to introduce dependencies between different dimensions of the original random variables. 

Normalizing Flows in VAEs 

Normalizing flows allow to address the simplicity of variational approximations by complexifying 

their posterior distribution [7]. In the case of VAEs, we parameterize the approximate posterior 

distribution with a flow of length K, qφ(z|x) = qK(zK), and the new optimization loss can be simply 

written as an expectation over the initial distribution q0(z) 

L = Eqφ (z|x)

  
log qφ(z|x) − log p(x, z)

  
 

" k 
∂ fi 

# 

 

 

 
(7) 

 

 

The resulting objective can be easily optimized since q0(z) is still a Gaussian distribution from 

which we can easily sample. However, the final samples zk used by the decoder are drawn from the 

much more complex transformed distribution. 

2.3. Synthesizer Parameters Optimization 

In the past years, the automatic parameterization of synthesizers has been the subject of several 

studies [3,4,16]. All of these approaches share the objective to optimize the correspondence between 

the generated sound and a given target sound. In the approach proposed by Cartwright et al. [2], 

audio descriptors such as the Mel Frequency Cepstral Coefficients (MFCCs) are used to evaluate the 

perceptual similarity to the target sound. This similarity is then iteratively refined during the search 

phase by weighting the different descriptors based on relevance feedback provided by the user [2]. 

Although this approach allow for user interaction, it seems to be very inaccurate and slow. Several 

— 
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approaches were proposed based on genetic algorithms and Genetic Programming (GP) [17] in 

order to automatically construct modular synthesizer patches that approximate a given target sound. 

The heuristic is conditioned on a set of input control functions (target amplitude and frequency 

over time). The approach proved quite successful, managing to retrieve complicated frequency 

modulation sounds with high precision. Yet, the main limitation of this system is that it induce very 

high computation times, with as much as 10 to 200 h required to produce a single audio approximation. 

Hence, this renders the approach unusable in realistic studio or stage contexts. Roth et al. [16] compared 

different optimization techniques, namely genetic programming, iterative hill-climbing, a single-layer 

artificial neural network and a simple nearest neighbour algorithm performed on a grid sampling of 

the parameter space of the synthesizer. In this study, the genetic programming approach appears to 

provide the best results. Very recently, Yee-King et al. [4] tackled the same problem by using more 

advanced recurrent neural networks (bidirectional LSTMs). However, the number of parameters and 

complexity of the sounds studied remains in a quite low setting. 

All of these approaches share the same flaws that they do not account for the non-linear 

relationships that exist between parameters and the corresponding synthesized audio, nor do they 

provide higher-level controls than the target-based parameters inference task. Here, we argue that it 

is mandatory to unveil the relationships between the auditory and parameters spaces of a synthesizer, 

and show that it provides multiple forms of high-level control. 

3. Our Proposal 

3.1. Formalizing Synthesizer Control 

Considering a dataset of audio samples D = {xi} , i ∈ [1, n] where the xi ∈ Rd follow an 

unknown distribution p(x), we can introduce latent factors z ∈ Rz to model the joint distribution 

p(x, z) = p(x | z)p(x) as detailed in Section 2.1. In our case, some x¯ ∈ Ds ⊂ D inside this set have 

been generated by a given synthesizer. This synthesizer defines a generative function fs(v; p, i) = x¯ 

where v ∈ Rs is a set of parameters that produce x¯ at a given pitch p and intensity i. However, in the 

general case, we know that if xj /∈  Ds, then xj = fs(v) + e where e models the error made when trying 

to reproduce an arbitrary audio sample xj with a given synthesizer. Finally, we consider that some 

audio examples are annotated with a set of categorical semantic tags ti = {0, 1}, which define high-level 

perceptual properties that separate unknown latent factors z and target factors t. Hence, the complete 

generative story of a synthesizer can be defined as 

p(x, v, t, z) = p(x|v, t, z)p(v|t, z)p(t|z)p(z). (8) 

This very general formulation entails our original idea that we should uncover the relationship 

between the latent audio z and parameters v spaces by modeling p(v, z). The advantage of this 

formulation is that the reduced dimensionality Rz Rx of the latent z simplifies the problem of 

parameters inference, by relying on a more adequate and smaller input space. Furthermore, this 

formulation also provides a natural way of learning macro-controls by inferring p(v|z), where separate 

dimensions of z are expected to produce smooth auditory transforms. Interestingly, this can be seen as 

a way to learn the principal dimensions of audio variations in the synthesizer 

3.2. Mapping Latent Spaces with Regression Flows 

In order to map the latent z and parameter v spaces, we can first consider that the latent z and 

semantic t variables are both unknown latent factors where p(z′) = p(z, t). Hence, we can first address 
the following reduced formulation 

log pθ (x, v, z′) = log(pθ (x|v, z′)pθ (z′)) + log pθ (v|z′). (9) 
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This allows to separately model the variational approximation (detailed in Section 2.1), 
while solving the inference problem pθ (v|z). To address this inference, we propose to optimize 

the parameters ψ of a transform fψ so that v = fψ(z) + e, where e ∼ N (0, Cv) models the 

inference error as a zero-mean additive Gaussian noise with covariance Cv. Here, we assume that the 

covariance decomposes into Cv−1 = ∑i exp(λi)Qi, where Qi are fixed basis functions and the λ are 

hyperparameters. Therefore, the full joint likelihood that we will optimize is given by 

L fψ,λ = log
 

pθ (v| fψ, λ, z)pθ ( fψ|z)pθ (λ|z)
 

. (10) 

If we know the optimal transform fψ and parameters λ, the likelihood of the data is 

pθ (v | fψ, λ, z) = N (v; fψ(z), Cv) (11) 

However, the two posteriors pθ ( fψ|z) and pθ (λ|z) remain intractable in the general case. In order 

to solve this issue, we rely again on variational inference by defining an approximation qφ( fψ, λ|v, z) 

and assume that it factorizes as q( fψ, λ|v, z) = q( fψ|v, z)q(λ|v, z). Therefore, our complete inference is 

L fψ,λ = log
 

pθ (v| fψ, λ, z)
 

+ DKL

 
qφ( fψ|z, v)  pθ ( fψ|z)

 
+ DKL

 
qφ(λ|z, v)  pθ (λ|z)

 
(12) 

Hence, we can optimize our approximations through the KL divergence if we find a closed form. 

To solve for λ, we use a Gaussian distribution for both the prior pθ (λ|z) = N (λ, µλ, Cλ) and posterior 

qφ(λ|z, v) = N (λ, µq, Cq). Hence, we obtain a simple analytical solution for λ. However, the second 

part of the objective might be more tedious. Indeed, to perform an accurate inference, we need to rely 

on a complicated non-linear function, which cannot be assumed to be Gaussian. To address this issue, 

we introduce the idea of regression flows. We consider that the transform fψ(z) is a normalizing flow 

(see Section 2.1) and provides two different ways of optimizing this approximation. 

3.2.1. Posterior Parameterization 

First, we follow a reasoning akin to the original formulation of normalizing flows by 

parameterizing the posterior qφ( fψ|z, v) with a flow to obtain qk(vk). Hence, by developing the 

KL expression, we obtain 

" k 
∂ fi  

# 

 

 

Hence, we can now safely rely on Gaussian priors for q0(v0) and p(vk). This formulation allows 

to consider v as a transformed version of z, while being easily invertible as z = f −1 (v). We denote 

this version as Flowpost. 
 

3.2.2. Conditional Amortization 

Here, we consider that the parameters ψ of the flow are random variables that are optimized by 

decomposing the posterior KL objective as 

" k 
∂ fi  

# 

 

 

As we rely on Gaussian priors for the parameters, this additional KL term can be computed easily. 

In this version, denoted Flowcond, parameters of the flow are sampled from their distributions before 

computing the resulting transform. 

DKL qφ( fψ|z, v)  p( fψ|z) = Eq0 [log q0(v0)] − Eq0 [log p(vk)] − Eq0 

DKL qφ( fψ|z, v)  p( fψ|z) = DKL qφ(ψ|z)  p(ψ|z) + Eq0 (v0 ) 
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3.3. Disentangling Flows for Semantic Dimensions 

Based on the previous formulation, we can reintroduce the semantic tags in the model by expanding 

latent factors z with a categorical variable t. Hence, we define the generative process pθ (x|t, z) where 

p(t) = Cat(t|π) and p(π) is the prior distribution of the tags. We define the inference model as 

qφ(z, t|x) and assume that it factorizes as qφ(z, t|x) = qφ(z|x)qφ(t|x). In order to handle the fact that 

tags are not always observed, we define a model similar to [18]. When t is unknown, it is considered 

as a latent variable over which we can perform posterior inference 

Lu = −E [log pθ (x|t, z) + log pθ (t) + log pθ (z)] − E
 

log qφ(t, z|x)
  

When tags t are known, we take a rather unusual approach through the idea of disentangling flows. 

As we seek to obtain a latent dimension with continuous semantic control, we define a tag pair as a set 

of negative t− and positive t+ samples. We define two target distributions p(zt− ) ∼ N (−µ∗, σ−) and 

p(zt+ ) ∼ N (+µ∗, σ+) that model samples of a semantic pair as opposite sides of a latent dimension. 

Hence, we turn the treatment of tags into a density estimation problem, where we aim to match tagged 

samples t∗ densities to given explicit target densities by minimizing DKL qφ(zt∗ |x)  p(zt∗ ) . To solve 

this, we consider that qφ(zt∗ |x) is parameterized by a normalizing flow fk applied to the latent z, 

leading to our final objective 

" k 
∂ fi 

# 

 

 

This formulation enforces a form of supervised disentanglement, where some of the latent 

dimensions z are transformed to provide controls with explicit semantic target properties. The final 

bound is defined as the sum of both objectives L = Lo + Lu and the complete model is obtained by 

integrating regression and disentangling flows together. 

4. Experiments 

4.1. Dataset 

4.1.1. Synthesizer Sounds Dataset 

We constructed a dataset of synthesizer sounds and corresponding parameters, by using an 

off-the-shelf commercial VST synthesizer Diva developed by U-He (https://u-he.com/products/ 

diva/). It should be noted that our model can hypothetically work for any synthesizer, as long 

as we can produce couples of (audio, parameters) as input. We selected Diva as (i) almost all its 

parameters can be MIDI-controlled, (ii) large banks of presets are readily available, and (iii) presets 

include well-organized semantic tags pairs. The factory presets for Diva and additional presets from 

the internet were collected, leading to a total of roughly 11k files. We manually established the 

correspondence between synth and MIDI parameters as well as the parameters values range and their 

distributions. We only kept continuous parameters and normalize each of these parameters so that 

their values lie in the range [0, 1]. All other parameters are set to their fixed default value. Finally, 

we performed parameter selection by computing the PCA of the parameters value for the whole presets 

dataset. We sorted the contribution of each parameter to the principal components that explain more 

than 80% of the variance and performed manual screening to select increasing sets of the most used 16, 

32 and 64 parameters. We use RenderMan (https://github.com/fedden/RenderMan) to batch-generate 

all the audio files by playing a C4 note for 3 s. and recording for 4 s. to capture the release of the note. 

The files are saved in 22,050 Hz and 16-bit floating point format. 

Lo = DKL qφ(zt∗ )  p(zt∗ ) = E (13) 

https://u-he.com/products/diva/
https://u-he.com/products/diva/
https://github.com/fedden/RenderMan
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4.1.2. Audio Processing 

For each sample, we compute a 128 bins Mel-spectrogram with a FFT of size 2048 ms. with a hop 

of 1024 ms. and frequency range of [30, 11,000] Hz. We only keep the magnitude of the spectrogram 

and perform a log-amplitude transform. The dataset is randomly split between a training (80%), 

validation (10%), and test (10%) set before each training. We repeat the training k = 5 times to perform 

k-fold cross-validation. Finally, we perform a corpus-wide zero-mean unit-variance normalization 

over the whole spectrogram based on the train set. 

4.1.3. Metadata 

Diva presets often contain useful metadata tags called characteristics that define high-level semantic 

properties of the audio output. Interestingly, these are well organized and defined as opposite pairs 

with clear concepts such as [Bright, Dark] or [Soft, Aggressive]. We retained a set of 10 such pairs and add 

the Unknown category for each pair when no tag of the pair is present (as presets may have multiple 

characteristics). Therefore, the final dataset is composed of triplets containing (synthesized audio 

output, parameters vector, semantic tags metadata). 

4.2. Models 

4.2.1. Baseline Models 

In order to evaluate our proposal, we implemented several feed-forward deep models that take 

the complete spectrogram xi of a sample as input and try to infer the corresponding parameters vi. 

All these models are trained with a Mean-Squared Error (MSE) loss between the output of the model 

and the parameters vector. First, we implement a 5-layers MLP with 2048 hidden units per layer, 

Exponential Linear Unit (ELU) activation, batch normalization and dropout with p = 0.3. This model 

is applied on a flattened version of the input and the final layer is a sigmoid activation. We implement 

a convolutional model composed of 5 layers with 128 channels of strided dilated 2-D convolutions 

with kernel size 7, stride 2, and an exponential dilation factor of 2l (starting at l = 0) with batch 

normalization and ELU activation. The convolutions are followed by a 3-layers MLP of 2048 hidden 

units with the same properties as the previous model. Finally, we implemented a Residual Network 

(denoted ResCNN), with parameters settings identical to CNN, while the residual paths are defined 

as simple 1x1 convolution that maps to the same size. 

4.2.2. Our Proposal 

We implemented various *AE architectures, which are defined through two training losses. First, 

the traditional AE training is performed by using a MSE reconstruction loss on the spectrograms. 

We use the previously described CNN setup for both encoders and decoders. However, we halve their 

number of parameters (by dividing the number of units and channels) to perform a fair comparison by 

obtaining roughly the same capacity as the baselines. All AEs map to latent spaces of dimensionality 

equal to the number of synthesis parameters. For all these architectures, a second network is used to 

try to infer the parameters vi based on the latent code zi obtained by encoding a specific spectrogram xi. 

For this part, we train all simple AE models with a 2-layers MLP of 1024 units to predict the parameters 

based on the latent space, with a MSE loss. First, we implement a simple deterministic AE without 

regularization. We implement the VAE by adding a KL regularization to the latent space and the WAE 

by replacing the KL by the MMD. Finally, we implement VAEf low by adding a normalizing flow of 16 

successive IAF transforms to the VAE posterior. We perform warmup [11] by linearly increasing the 

latent regularization β from 0 to 1 for 100 epochs. Then, we use regression flows (Flowreg) by adding 

them to VAEf low, with an IAF of length 16 without tags. In both cases, we introduce the regression 

objective only after 100 epochs and also apply warmup. Finally, we add the disentangling flows (Flowdis) 

by adding our objective defined in Section 3.3. 
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4.2.3. Optimization Aspects 

We train all models for 500 epochs with the ADAM optimizer, an initial learning rate of 0.0002, 

Xavier initialization of the weights and a scheduler that halves the learning rate if the validation loss 

stalls for 20 epochs. With this setup, the complete model (VAEf low with regression) only needs 5 h to 

complete training on a NVIDIA Titan Xp GPU. 

5. Results 

5.1. Parameters Inference 

First, we compare the accuracy of all models on the parameters inference task by computing 

the magnitude-normalized Mean Square Error (MSEn) between predicted and original parameters 

values. We average these results across folds and report variance. We also evaluate the distance 

between the audio synthesized from the inferred parameters and the original audio with the Spectral 

Convergence (SC) distance (magnitude-normalized Frobenius norm) and MSE (it should be noted 

that these measures only provide a global evaluation of spectrogram similarity, and that perceptual 

aspects of the results should be evaluated in human listening experiments that are left for future work). 

We provide evaluation results for 16, 32, and 64 parameters on the test set in Table 1. 

 
Table 1. Comparison between baselines, *AEs, and our flows on the test set with 16, 32, and 64 

parameters. We report across-folds mean and variance for parameters (Mean-Squared Error [MSEn]) 

and audio (Spectral Convergence [SC] and MSEn) errors. The best results are indicated in bold. 
 

Test Set—16 Parameters  Test Set—32 Parameters  Test Set—64 Parameters 

Params Audio Params Audio Params Audio 

MSEn SC MSEn MSEn SC MSEn MSEn SC MSEn 

MLP  0.236 ± 0.44  6.226 ± 0.13  9.548 ± 3.1  0.218 ± 0.46 13.51 ± 3.1 36.48 ± 11.9  0.185 ± 0.41  39.59 ± 6.7  49.58 ± 2.7 

CNN  0.171 ± 0.45  1.372 ± 0.29  6.329 ± 1.9  0.159 ± 0.46 19.18 ± 4.7 33.40 ± 9.4 0.202 ± 0.37  52.48 ± 7.2  76.13 ± 8.9 

ResNet  0.191 ± 0.43  1.004 ± 0.35  6.422 ± 1.9  0.196 ± 0.49 10.37 ± 1.8 31.13 ± 9.8 0.248 ± 0.43  29.18 ± 3.8  78.15 ± 9.8 

AE  0.181 ± 0.40  0.893 ± 0.13  5.557 ± 1.7  0.169 ± 0.40 5.566 ± 1.2 17.71 ± 6.9 0.189 ± 0.37  8.123 ± 2.4  34.07 ± 2.4 

VAE  0.182 ± 0.32  0.810 ± 0.03  4.901 ± 1.4  0.153 ± 0.34 5.519 ± 1.4 16.85 ± 6.1 0.171 ± 0.37  5.152 ± 1.1  33.10 ± 2.4 

WAE  0.159 ± 0.37  0.787 ± 0.05  4.979 ± 1.5  0.147 ± 0.33  3.967 ± 0.88 16.64 ± 6.2 0.167 ± 0.36  8.960 ± 1.8  32.59 ± 2.1 

VAEf low  0.199 ± 0.32  0.838 ± 0.02  4.975 ± 1.4  0.164 ± 0.34  1.418 ± 0.23 17.74 ± 6.8 0.174 ± 0.36  6.721 ± 1.4  33.81 ± 2.3 

Flowreg  0.197 ± 0.31  0.752 ± 0.05  4.409 ± 1.6  0.193 ± 0.32 0.911 ± 1.4 16.61 ± 7.4 0.178 ± 0.37  4.794 ± 1.8  34.49 ± 2.2 
 

Flowdis.  0.199 ± 0.31  0.831 ± 0.04  5.103 ± 2.1  0.197 ± 0.42 1.481 ± 1.8 17.12 ± 7.9 0.182 ± 0.38  8.122 ± 1.8  34.97 ± 2.3 

 
In low parameters settings, baseline models seem to perform an accurate approximation of 

parameters, with the CNN providing the best inference. Based on this criterion solely, our formulation 

would appear to provide only a marginal improvement, with VAEs even outperformed by baseline 

models and best results obtained by the WAE. However, analysis of the corresponding audio accuracy 

tells an entirely different story. Indeed, AEs approaches strongly outperform baseline models in audio 

accuracy, with the best results obtained by our proposed Flowreg (1-way ANOVA F = 2.81, p < 0.003). 

These results show that, even though AE models do not provide an exact parameters approximation, 

they are able to account for the importance of these different parameters on the synthesized audio. 

This supports our original hypothesis that learning the latent space of synthesizer audio capabilities is 

a crucial component to understand its behavior. Finally, it appears that adding disentangling flows 

(Flowdis) slightly impairs the audio accuracy. However, the model still outperform most approaches, 

while providing the huge benefit of explicit semantic macro-controls. 

5.2. Increasing Parameters Complexity 

We evaluate the robustness of different models by increasing the number of parameters from 16 to 

32 and finally 64 (Table 1). As we can see, the accuracy of baseline models is highly degraded, notably 

on audio reconstruction. Interestingly, the gap between parameter and audio accuracies is strongly 

increased. This seems logical as the relative importance of parameters in larger sets provoke stronger 
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(c) 

 

impacts on the resulting audio. Also, it should be noted that VAE∗ models now outperform baselines 

even on parameters accuracy. Although our proposal also suffers from larger sets of parameters, 
it appears as the most resilient and can still cope with this higher complexity. While the gap between 

AE variants is more pronounced, the flows strongly outperform all methods (F = 8.13, p < 0.001). 

5.3. Reconstructions and Latent Space 

We provide an in-depth analysis of the relations between inferred parameters and corresponding 

synthesized audio to support our previous claims. First, we selected two samples from the test set and 

compare the inferred parameters and synthesized audio in Figure 3. 
 

(a) Original Res-CNN Flow Original Res-CNN Flow (b) 

 
 
 
 
 
 
 
 
 

 

 
 

 

Figure 3. Reconstruction analysis. Comparing parameters inference and resulting audio on the test set 

with 16 (a) or 32 (b) parameters, and on the out-of-domain (c) sets composed either of sounds from other 

synthesizers (left) or vocal imitations (right). 

As we can see, although the CNN provides a close inference of the parameters, the synthesized 

approximation completely misses important structural aspects, even in simpler instances as the simple 

harmonic structure in the first example (a). This confirms our hypothesis that direct inference models 

are unable to assess the relative impact of parameters on the audio. Indeed, the errors in all parameters 

are considered equivalently, even though the same error magnitude on two different parameters 

can lead to dramatic differences in the synthesized audio. Oppositely, even though the parameters 

inferred by our proposal are quite far from the original preset, the corresponding audio is largely more 

similar. This indicates that the latent space provides knowledge on the audio-based neighborhoods of the 

synthesizer. Therefore, this allows to understand the impact of different parameters in a given region 

of the latent audio space. 

To confirm this hypothesis, we encode two random distant examples from the test set in the latent 

audio space and perform random sampling around these points to evaluate how local neighborhoods 

are organized. We also analyze the latent interpolation between those examples. The results are 

displayed in Figure 4. As we can see, our hypothesis seems to be confirmed by the fact that 

neighborhoods are highly similar in terms of audio but have a larger variance in terms of parameters. 

Interestingly, this leads to complex but smooth non-linear dynamics in the parameters interpolation. 
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Figure 4. Latent neighborhoods. We select two examples from the test set that map to distant locations in 

the latent space z and perform random sampling in their local neighborhood to observe the parameters 

and audio. We also display the latent interpolation between those points. 

5.4. Out-Of-Domain Generalization 

We evaluate out-of-domain generalization by applying parameters inference and re-synthesis on 

two sets of audio samples either produced by other synthesizers, or with vocal imitations. We rely on 

the same evaluation method as previously described and provide results for the audio similarity in 

Table 2 (Right). Here, the overall distribution of scores remains consistent with previous observations. 

However, it seems that the average error is quite high, indicating a potentially distant reconstruction 

of some examples. This might be explained by the limited number of parameters used for training 

our models. Therefore, they cannot account for complex sounds with various types of modulations. 

Interestingly, while the addition of more parameters to perform the optimization allows to reduce the 

global approximation error in AE models, it seems to worsen the feed-forward estimation. This seems to 

further confirm our original hypothesis that feed-forward approaches are not able to handle advanced 

interactions in the parameters. 

 
Table 2. Comparison between baselines, *AEs, and our flows on the out-of-domain parameters inference 

task. We report across-folds mean and variance for parameters (MSE) and audio (SC and MSE) errors. 
 

Out-of-Domain (32 p.) Out-of-Domain (64 p.) 

SC MSE  SC MSE 

MLP 2.348 ± 2.1 37.99 ± 7.8 4.534 ± 5.1 40.42 ± 3.7 
CNN 2.311 ± 2.2 29.22 ± 8.2 6.329 ± 1.9 36.93 ± 2.3 

  ResNet 2.322 ± 1.6 31.07 ± 9.5 4.645 ± 3.1 27.46 ± 2.3  

AE 1.225 ± 2.2 27.37 ± 7.2 2.557 ± 1.7 27.16 ± 1.4 

VAE 1.237 ± 1.3 27.06 ± 7.1 1.141 ± 1.2 27.15 ± 1.3 
WAE 1.194 ± 1.5 26.10 ± 6.4 0.999 ± 0.9 25.13 ± 1.3 

 VAEf low 1.193 ± 1.8 27.03 ± 6.4 1.022 ± 1.7 26.49 ± 1.3  

  Flowreg 1.201 ± 1.2 26.07 ± 7.7 1.132 ± 1.6 24.74 ± 1.3  

  Flowdis. 1.209 ± 1.4 26.77 ± 7.3 1.532 ± 1.8 27.89 ± 1.7  
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In order to better understand the results and limits of our proposal, we display in Figure 3 the 

resynthesis of random examples taken from the synthesizer (left) and vocal imitations (right) datasets. 

As we can see, in all cases, our proposal accurately reproduces the temporal spectral shape of target 

sounds, even if the timbre is somewhat distant. Upon closer listening, it seems that the models fail 

to reproduce the local timbre of voices but performs quite well with sounds from other synthesizers. 

However, the evolution of the spectral shape is still reproduced. Interestingly, this provides a form 

of vocal sketching control where the user inputs vocal imitations of the sound that he is looking for. 

This allows to quickly produce an approximation of the intended sound and, then, exploring the audio 

neighborhood of the sketch for intuitive refinement. 

5.5. Macro-Parameters Learning 

Our formulation is the first to provide a continuous mapping between the audio z and parameter v 

spaces of a synthesizer. As latent VAE dimensions has been shown to disentangle major data variations, 

we hypothesized that we could directly use z as macro-parameters defining the principal dimensions of 

audio variations in a given synthesizer. Hence, we introduce the new task of macro-parameters learning 

by mapping latent audio dimensions to parameters through p(v|z), which provides simplified control 

of the major audio variations for a given synthesizer. This is depicted in Figure 5. 
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Figure 5. Macro-parameters learning. We show two of the learned latent dimensions z and compute 

the mapping p(v|z) when traversing these dimensions, while keeping all other fixed at 0 to see how 

z define smooth macro-parameters. We plot the evolution of the 5 parameters with highest variance 

(top), the corresponding synthesis (middle), and audio descriptors (bottom). (Left) z3 seems to relate 

to a percussivity parameter. (Right) z7 defines a form of harmonic densification parameter. 

We show the two most informative latent dimensions z based on their variance. We study 

the traversal of these dimensions by keeping all other fixed at 0 to assess how z defines smooth 

macro-parameters through the mapping p(v|z). We report the evolution of the 5 parameters with 

highest variance (top), the corresponding synthesis (middle) and audio descriptors (bottom). 

First, we can see that latent dimension corresponds to very smooth evolutions in terms of 

synthesized audio and descriptors. This is coherent with previous studies on the disentangling abilities 

of VAEs [6]. However, a very interesting property appear when we map to the parameter space. 

Although the parameters evolution is still smooth, it exhibits more non-linear relationships between 

different parameters. This correlates with the intuition that there are lots of complex interplays in 

parameters of a synthesizer. Our formulation allows to alleviate this complexity by automatically 

providing macro-parameters that are the most relevant to the audio variations of a given synthesizer. 

Here, we can see that the z3 latent dimension (left) seems to provide a percussivity parameter, where low 

values produce a very slow attack, while moving along this dimension, the attack becomes sharper 

and the amount of noise increases. Similarily, z7 seems to define an harmonic densification parameter, 

starting from a single peak frequency and increasingly adding harmonics and noise. Although the 

unsupervised macro-parameters provide some clear effects on the synthesis, it appears that they do 
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not act on a single aspect of the timbre. This seems to indicate that the macro-parameters still relate to 

some entangled properties of the audio. Furthermore, as these dimensions are unsupervised, we still 

need to define their effects through direct exploration. Additional macro-parameters are discussed on 

the supporting webpage of this paper. 

5.6. Semantic Parameter Discovery 

Our proposed disentangling flows can steer the organization of selected latent dimensions so that 

they provide a separation of given tags. As this audio space is mapped to parameters through p(v|z), 

this turns the selected dimensions into macro-parameters with a defined semantic meaning. To evaluate 
this, we analyze the behavior of corresponding latent dimensions, as depicted in Figure 6. 
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Figure 6. Semantic macro-parameters. Two latent dimensions z learned through disentangling flows 

for different pairs. We show the effect on the latent space (left) and parameters mapping p(v|z) 

when traversing these dimensions, that define smooth macro-parameters. We plot the evolution of 6 

parameters with highest variance and the resulting synthesized audio (right). 

First, we can see the effect of disentangling flows on the latent space (left), which provide a 
separation of semantic pairs. We study the traversal of semantic dimensions while keeping all other 

fixed at 0 and infer parameters through p(v|z). We display the 6 parameters with highest variance and 

the resulting synthesized audio. As previously observed for unsupervised dimensions, the semantic 

latent dimensions also seem to provide a very smooth evolution in terms of both parameters and 
synthesized audio. Regarding the precise effect of different semantic dimensions, it appears that 

the [‘Constant’, ‘Moving’] pair provides a very intuitive result. Indeed, the synthesized sounds are 

mostly stationary in extreme negative values, but gradually incorporate clearly marked temporal 

modulations. Hence, our proposal appears successful to uncover semantic macro-parameters for a 

given synthesizer. However, the corresponding parameters are quite harder to interpret. The [‘Calm’, 

‘Aggressive’] dimension also provides an intuitive control starting from a sparse sound and increasingly 

adding modulation, resonance and noise. However, we note that the notion of ‘Aggressive’ is highly 

subjective and requires finer analyses to be conclusive. 

5.7. Creative Applications 

Our proposal allows to perform a direct exploration of presets based on audio similarity. Indeed, 

as the flow is invertible, we can map parameters to the audio space for exploration, and then back 

to parameters to obtain a new preset. Furthermore, this can be combined with vocal sketch control 

where the user inputs vocal imitations of the sound that he is looking for. In order to allow creative 
experiments, we implemented all the models and interactions detailed in this paper in an experimental 

Max4Live interface that is displayed in Figure 7. We embedded our models inside MaxMSP by using 

an OSC communication server with the Python implementation. We further integrate it into Ableton Live 
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by using the Max4Live interface. This interface wraps the Diva VST and allows to provide control based 

on all of the proposed models. Hence, this interface allows to input a wave file or direct vocal recording 

to perform parameter inference. The model can provide the VST parameters for the approximation 

in less than 30 ms on a CPU. The interface also provides a representations of the projected latent 

audio space, onto which is plotted the preset library. This allows to perform audio-based preset 

exploration, but also to draw paths between different presets or simply across the audio space. By 

freely exploring the dimensions, the user can also experiment the unsupervised macro-control and also 

explore supervised semantic dimensions. Finally, we implemented an interaction with the Leap Motion 

controller, which allows to directly control the synthesized sound with one’s hand. 

 

 
Figure 7. FlowSynth interface for audio synthesizer control in Ableton Live. The interface wraps a 

given VST, and allows to perform direct parameters inference, audio-based preset exploration and 

relying on both semantic and unsupervised macro-controls learned by our model. 

6. Conclusions 

In this paper, we discussed several novel ideas based on our recent novel formulation of the 

problem of synthesizer control as matching the two latent spaces defined as the audio perception space 

and the synthesizer parameter space. To solve this new formulation, we relied on VAEs and Normalizing 

Flows to organize and map the auditory and parameter spaces of a given synthesizer. We introduced 

the disentangling flows, which allow to obtain an invertible mapping between two separate latent 

spaces, while steering the organization of some latent dimensions to match target variation factors by 

splitting the objective as partial density evaluation. 

We showed that our approach outperforms all previous proposals on the seminal problem of 

parameters inference, and that it is able to provide an interesting approximation to any type of sound in 

almost real-time, even on a CPU. We showed that for sounds that are not produced by synthesizers, 

our model is able to match the evolution of the spectral shape quite well, even though the local 

timbre is not well approximated. We further showed that our formulation also naturally introduces 

various original and first-of-kind tasks of macro-control learning, audio-based preset exploration, and 

semantic parameters discovery. Hence, our proposal is the first to be able to simultaneously address 

most synthesizer control issues at once, while providing higher-level understanding and controls. 

In order to allow for usable and creative exploration of our proposed methods, we implemented 

a Max4Live interface that is available freely along with the source code of all approaches on the 

supporting webpage of this paper. 

Altogether, we hope that this work will provide new means of exploring audio synthesis, sparking 

the development of new leaps in musical creativity. 
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