

American Journal of Applied Sciences Volume 15, Issue 1, 2025

Article

Flow Synthesizer: Universal Audio Synthesizer
Control with Normalizing Flows †

Philippe Esling 1,*, Naotake Masuda 1, Adrien Bardet 1, Romeo Despres 1 and Axel

Chemla-Romeu-Santos 1,2

1 IRCAM—CNRS UMR 9912 Sorbonne Université, 75004 Paris, France
2 Laboratorio d’Informatica Musicale (LIM), UNIMI, 20133 Milano, Italy

Abstract: The ubiquity of sound synthesizers has reshaped modern music production, and novel

music genres are now sometimes even entirely defined by their use. However, the increasing

complexity and number of parameters in modern synthesizers make them extremely hard to master.

Hence, the development of methods allowing to easily create and explore with synthesizers is a crucial

need. Recently, we introduced a novel formulation of audio synthesizer control based on learning

an organized latent audio space of the synthesizer’s capabilities, while constructing an invertible

mapping to the space of its parameters. We showed that this formulation allows to simultaneously

address automatic parameters inference, macro-control learning, and audio-based preset exploration within a

single model. We showed that this formulation can be efficiently addressed by relying on Variational

Auto-Encoders (VAE) and Normalizing Flows (NF). In this paper, we extend our results by evaluating

our proposal on larger sets of parameters and show its superiority in both parameter inference and

audio reconstruction against various baseline models. Furthermore, we introduce disentangling flows,

which allow to learn the invertible mapping between two separate latent spaces, while steering the

organization of some latent dimensions to match target variation factors by splitting the objective as

partial density evaluation. We show that the model disentangles the major factors of audio variations

as latent dimensions, which can be directly used as macro-parameters. We also show that our model is

able to learn semantic controls of a synthesizer, while smoothly mapping to its parameters. Finally,

we introduce an open-source implementation of our models inside a real-time Max4Live device that

is readily available to evaluate creative applications of our proposal.

Keywords: audio synthesizer; normalizing flows; variational inference; music information retrieval;

machine learning; probabilistic graphical models; generative models; creative AI

1. Introduction

Synthesizers are parametric systems able to generate audio signals ranging from musical

instruments to entirely unheard-of sound textures. Since their commercial beginnings more than

50 years ago, synthesizers have revolutionized music production, while becoming increasingly

accessible, even to neophytes with no background in signal processing.

While there exists a variety of sound synthesis types [1], all of these techniques require an extensive

a priori knowledge to make the most out of a synthesizer possibilities. Hence, the main appeal of

these systems (namely their versatility provided by large sets of parameters) also entails their major

drawback. Indeed, the sheer combinatorics of parameter settings makes exploring all possibilities

American Journal of Applied Sciences Volume 15, Issue 1, 2025

Invertible mapping

[semantic]

[dark]
[aggressive]

to find an adequate sound a daunting and time-consuming task. Furthermore, there exist highly

non-linear relationships between the parameters and the resulting audio. Unfortunately, no synthesizer

provides intuitive controls related to perceptual and semantic properties of the generated audio. Hence,

a method allowing an intuitive and creative exploration of sound synthesizers has become a crucial

need, especially for non-expert users.

A potential direction taken by synth manufacturers is to propose programmable macro-controls

that allow to efficiently manipulate the generated sound qualities by controlling multiple parameters

through a single knob. However, these need to be programmed manually, which still requires expert

knowledge. Furthermore, no method has ever tried to tackle this macro-control learning task, as this

objective appears unclear and depends on a variety of unknown factors. An alternative to manual

parameters setting would be to infer the set of parameters that could best reproduce a given target

sound. This task of parameters inference has been studied in the past years using various techniques,

such as iterative relevance feedback on audio descriptors [2], Genetic Programming to directly grow

modular synthesizers [3], or bi-directional LSTM with highway layers [4] to produce parameters

approximation. Although these approaches might be appealing, they all share the same fundamental

flaws that (i) though it is unlikely that a synthesizer can generate exactly any audio target, none

explicitly model these limitations, (ii) they do not account for the non-linear relationships that exist

between parameters and the corresponding synthesized audio, and (iii) none of these approaches allow

for higher-level controls or interaction with audio synthesizers. Hence, no approach has succeeded

in unveiling the true relationships between these auditory and parameters spaces. Hence, it appears

mandatory to organize the parameters and audio capabilities of a given synthesizer in their respective

spaces, while constructing an invertible mapping between these spaces in order to access a range of

high-level interactions. This idea is depicted in Figure 1.

Synth

Auditory space

(b)

Parameter space

Figure 1. Universal synthesizer control. (a) Previous methods perform direct parameter inference from

the audio, which is inherently limited by the non-differentiable synthesis operation and provides no

higher-level form of control. (b) Our novel formulation states that we should first learn an organized

and compressed latent space z of the synthesizer’s audio capabilities, while mapping it to the space v

of its synthesis parameters. This provides a deeper understanding of the principal dimensions of audio

variations in the synthesizer, and an access to higher-level interactions.

The recent rise of generative models might provide an elegant solution to these questions. Indeed,

amongst these models, the Variational Auto-Encoder (VAE) [5] aims to uncover the underlying structure

of the data, by explicitly learning a latent space [5]. This space can be seen as a high-level representation,

which aims to disentangle underlying variation factors and reveal interesting structural properties

of the data [5,6]. VAEs address the limitations of control and analysis through this latent space,

while being able to learn on small sets of examples. Furthermore, the recently proposed Normalizing

(a) Transform Inference

?

American Journal of Applied Sciences Volume 15, Issue 1, 2025

Flows (NF) [7] also allow to model highly complex distributions in this latent space. Although the use

of VAEs for audio applications has only been scarcely investigated, Esling et al. [8] recently proposed a

perceptually regularized VAE that learns a space of audio signals aligned with perceptual ratings via a

regularization loss. The resulting space exhibits an organization that is well aligned with perception.

Hence, this model appears as a valid candidate to learn an organized audio space.

Recently, we introduced a radically novel formulation of audio synthesizer control [9] by

formalizing it as the general question of finding an invertible mapping between organized latent spaces,

linking the audio space of a synthesizer’s capabilities to the space of its parameters. We provided

a generic probabilistic formalization and showed that it allows to address simultaneously the tasks

of parameter inference, macro-control learning, and audio-based preset exploration within a single model.

To solve this new formulation, we proposed conditional regression flows, which map a latent space to

any given target space, as depicted in Figure 2. Based on this formulation, parameter inference simply

consisted of encoding the audio target to the latent audio space that is mapped to the parameter

space. Interestingly, this bypasses the well-known blurriness issue in VAEs as we can generate directly

with the synthesizer instead of the decoder. In this paper, we extend the evaluation of our proposal

on larger sets of parameters against various baseline models and show its superiority in parameter

inference and audio reconstruction. Furthermore, we discuss how our model is able to address the

task of automatic macro-control learning that we introduced in Ref. [9] with this increased complexity.

As the latent dimensions are continuous and map to the parameter space, they provide a natural way

to learn the perceptually most significant macro-parameters. We show that these controls map to

smooth, yet non-linear parameters evolution, while remaining perceptually continuous. Hence, this

provides a way to learn the compressed and principal dimensions of macro-control in a synthesizer.

Furthermore, as our mapping is invertible, we can map synthesis parameters back to the audio space.

This allows intuitive audio-based preset exploration, where exploring the neighborhood of a preset

encoded in the audio space yields similarly sounding patches, yet with largely different parameters.

In this paper, we further propose disentangling flows to steer the organization of some of the latent

dimensions to match given target distributions. We evaluate the ability of our model to learn these

semantic controls by explicitly targeting disentanglement in the latent space of the semantic tags

associated to synthesizer presets. We show that, although the model learns to separate the semantic

distributions, the corresponding controls are not easily interpretable. Finally, we introduce a real-time

implementation of our model in Ableton Live and discuss its potential use in creative applications (All

code, supplementary figures, results, and the real-time Max4Live plugin are available as open-source

packages on a supporting webpage: https://acids-ircam.github.io/flow_synthesizer/).

Figure 2. Universal synthesizer control. We learn an organized latent audio space z of a synthesizer

capabilities with a Variational Auto-Encoder (VAE) parameterized with Normalizing Flow (NF). This

space maps to the parameter space v through our proposed regression flow and can be further organized

with metadata targets t. This provides sampling and invertible mapping between different spaces.

Encode

[aggressive] / [calm] t

Decode

q

Parameter

 . . .

osc cut lfo Synth

…
…

…
…

…

…

…
…

…
…

https://acids-ircam.github.io/flow_synthesizer/

American Journal of Applied Sciences Volume 15, Issue 1, 2025

j=1

2. State-Of-Art

2.1. Generative Models and Variational Auto-Encoders

Generative models aim to understand a given set of input examples x ∈ Rdx by modeling the

underlying probability distribution of the data p(x). To do so, we introduce latent variables defined

in a lower-dimensional space z ∈ Rdz (dz dx). These variables can be seen as a higher-level

representation that could have led to generate a given example. The complete model is then defined

by the joint distribution p(x, z) = p(x|z)p(z). In order to obtain p(x), we would need to marginalize z

from the joint probability as follows

p(x) =

∫

p(x | z)p(z)dz. (1)

Unfortunately, as real-world data follow complex distributions, this formulation usually cannot be

solved analytically. The idea of variational inference (VI) is to solve this problem through optimization by

assuming a simpler approximate distribution qφ(z|x) ∈ Q from a family of parametric densities [10],

where φ denotes the variational parameters that we can optimize. The goal of VI is to minimize the

difference between this approximation and the real distribution, by minimizing the Kullback–Leibler
(KL) divergence between these densities

q∗
φ(z|x) = argminqφ (z|x)∈QDKL

qφ (z|x) p (z|x)

. (2)

However, our original problem is that we did not have a closed-form solution to the posterior

p(z | x). By developing this KL divergence, re-arranging terms (the detailed development can be found

in [5]) and introducing parametric distributions for the likelihood pθ (x | z) and prior pθ (z), we obtain

log p(x) − DKL

qφ(z|x) p(z|x)

= Ez

log p(x|z)

− DKL

qφ(z|x) p(z)

. (3)

This formulation describes the quantity we want to model log p(x) minus the error we make by

using an approximate q instead of the true p. Therefore, we can optimize this alternative objective,

called the evidence lower bound (ELBO), by optimizing the parameters φ and θ of the distributions

Lθ,φ = E

log pθ (x|z)

− β · DKL

qφ(z|x) pθ (z)

. (4)

Intuitively, the ELBO minimizes the reconstruction error through the likelihood of the data given a

latent log pθ (x|z), while regularizing the distribution qφ(z|x) to follow a given prior distribution pθ (z).

We can see that this equation involves qφ(z|x) which encodes the data x into the latent representation z

and a decoder pθ (x|z), which generates x given a z. This structure defines the Variational Auto-Encoder

(VAE), where we can use parametric neural networks to model the encoding (qφ) and decoding (pθ)

distributions. VAEs are powerful representation learning frameworks, while remaining simple and

fast to learn without requiring large sets of examples [11].
However, the original formulation of the VAE entails several limitations. First, it has been shown

that the KL divergence regularization can lead both to uninformative latent codes (also called posterior

collapse) and variance over-estimation [12]. One way to alleviate this problem is to rely on the Maximum

Mean Discrepancy (MMD) instead of the KL to regularize the latent space, leading to the WassersteinAE

(WAE) model [13]. Second, one of the key aspect in the success of VI lies in the choice of the family

of approximations. The simplest choice is the mean-field family where latent variables are mutually

independent and parametrized by distinct variational parameters q(z) = ∏m qj(zj). Although this

provide an easy tool for analytical development, it might prove too simplistic when modeling complex

data as this assumes pairwise independence among every latent axis. In order to alleviate this issue,

normalizing flows [7] have been proposed by adding a sequence of invertible transformations to the

latent variable, providing a more expressive inference process.

American Journal of Applied Sciences Volume 15, Issue 1, 2025

i

i=1

 ∂z

qk(zk) = q0(f1 ◦ ... ◦ fk (zk)) ∏ det

∑ log det
i=1 i

1

2.2. Normalizing Flows

In order to transform a probability distribution, we can rely on the change of variable theorem.
As we deal with probability distributions, we need to scale the transformed density so that it still sums

to one, which is measured by the Jacobian of the transform. Formally, let z ∈ Rd be a random variable

with distribution q(z) and f : Rd → Rd an invertible smooth mapping. We can use f to transform

z ∼ q(z), so that the resulting random variable z′ = f (z) has the following probability distribution

q(z′) = q(z)

det

∂ f −1
= q(z)

det

∂ f −1

(5)

∂z′

∂z

where the last equality is obtained through the inverse function theorem [7]. As we can see, this

allows us to perform inference by relying on a more complicated (transformed) distribution q(z′),

while still being able to keep the simplicity of a mathematical development based on q(z). Now, we

can iteratively apply this reasoning and perform an arbitrary number of transforms to our original

variable such that zk = f1 ◦ ... ◦ fk(z0), in order to obtain a final distribution zk ∼ qk(zk) given by

−1 −1
k ∂ f −1

k
= q0(z0) ∏

det ∂ fi

−1

i=1
 ∂zi−1

This series of transformations, called a normalizing flow [7], can turn a simple distribution into

a complicated multimodal density. For practical use of these flows in inference, we need to define

transforms whose Jacobian determinants are easy to compute. Interestingly, Auto-Regressive (AR)

transforms fit this requirement as they lead to a triangular Jacobian matrix. Different types of AR flows

were proposed such as Inverse AR Flows (IAF) [14] and Masked AR Flows (MAF) [15]. These flows allow

to introduce dependencies between different dimensions of the original random variables.

Normalizing Flows in VAEs

Normalizing flows allow to address the simplicity of variational approximations by complexifying

their posterior distribution [7]. In the case of VAEs, we parameterize the approximate posterior

distribution with a flow of length K, qφ(z|x) = qK(zK), and the new optimization loss can be simply

written as an expectation over the initial distribution q0(z)

L = Eqφ (z|x)

log qφ(z|x) − log p(x, z)

" k
∂ fi

(7)

The resulting objective can be easily optimized since q0(z) is still a Gaussian distribution from

which we can easily sample. However, the final samples zk used by the decoder are drawn from the

much more complex transformed distribution.

2.3. Synthesizer Parameters Optimization

In the past years, the automatic parameterization of synthesizers has been the subject of several

studies [3,4,16]. All of these approaches share the objective to optimize the correspondence between

the generated sound and a given target sound. In the approach proposed by Cartwright et al. [2],

audio descriptors such as the Mel Frequency Cepstral Coefficients (MFCCs) are used to evaluate the

perceptual similarity to the target sound. This similarity is then iteratively refined during the search

phase by weighting the different descriptors based on relevance feedback provided by the user [2].

Although this approach allow for user interaction, it seems to be very inaccurate and slow. Several

—

∂zi
(6)

= Eq0 (z0) [ln q0(z0)] − Eq0 (z0) [log p(x, zK)] − Eq0 (z0)

American Journal of Applied Sciences Volume 15, Issue 1, 2025

approaches were proposed based on genetic algorithms and Genetic Programming (GP) [17] in

order to automatically construct modular synthesizer patches that approximate a given target sound.

The heuristic is conditioned on a set of input control functions (target amplitude and frequency

over time). The approach proved quite successful, managing to retrieve complicated frequency

modulation sounds with high precision. Yet, the main limitation of this system is that it induce very

high computation times, with as much as 10 to 200 h required to produce a single audio approximation.

Hence, this renders the approach unusable in realistic studio or stage contexts. Roth et al. [16] compared

different optimization techniques, namely genetic programming, iterative hill-climbing, a single-layer

artificial neural network and a simple nearest neighbour algorithm performed on a grid sampling of

the parameter space of the synthesizer. In this study, the genetic programming approach appears to

provide the best results. Very recently, Yee-King et al. [4] tackled the same problem by using more

advanced recurrent neural networks (bidirectional LSTMs). However, the number of parameters and

complexity of the sounds studied remains in a quite low setting.

All of these approaches share the same flaws that they do not account for the non-linear

relationships that exist between parameters and the corresponding synthesized audio, nor do they

provide higher-level controls than the target-based parameters inference task. Here, we argue that it

is mandatory to unveil the relationships between the auditory and parameters spaces of a synthesizer,

and show that it provides multiple forms of high-level control.

3. Our Proposal

3.1. Formalizing Synthesizer Control

Considering a dataset of audio samples D = {xi} , i ∈ [1, n] where the xi ∈ Rd follow an

unknown distribution p(x), we can introduce latent factors z ∈ Rz to model the joint distribution

p(x, z) = p(x | z)p(x) as detailed in Section 2.1. In our case, some x¯ ∈ Ds ⊂ D inside this set have

been generated by a given synthesizer. This synthesizer defines a generative function fs(v; p, i) = x¯

where v ∈ Rs is a set of parameters that produce x¯ at a given pitch p and intensity i. However, in the

general case, we know that if xj /∈ Ds, then xj = fs(v) + e where e models the error made when trying

to reproduce an arbitrary audio sample xj with a given synthesizer. Finally, we consider that some

audio examples are annotated with a set of categorical semantic tags ti = {0, 1}, which define high-level

perceptual properties that separate unknown latent factors z and target factors t. Hence, the complete

generative story of a synthesizer can be defined as

p(x, v, t, z) = p(x|v, t, z)p(v|t, z)p(t|z)p(z). (8)

This very general formulation entails our original idea that we should uncover the relationship

between the latent audio z and parameters v spaces by modeling p(v, z). The advantage of this

formulation is that the reduced dimensionality Rz Rx of the latent z simplifies the problem of

parameters inference, by relying on a more adequate and smaller input space. Furthermore, this

formulation also provides a natural way of learning macro-controls by inferring p(v|z), where separate

dimensions of z are expected to produce smooth auditory transforms. Interestingly, this can be seen as

a way to learn the principal dimensions of audio variations in the synthesizer

3.2. Mapping Latent Spaces with Regression Flows

In order to map the latent z and parameter v spaces, we can first consider that the latent z and

semantic t variables are both unknown latent factors where p(z′) = p(z, t). Hence, we can first address
the following reduced formulation

log pθ (x, v, z′) = log(pθ (x|v, z′)pθ (z′)) + log pθ (v|z′). (9)

American Journal of Applied Sciences Volume 15, Issue 1, 2025

 ∂v

[k,1]

 ∂v

∑ log det
i=1 i

1

∑ log det
i=1 i

1

—

—

This allows to separately model the variational approximation (detailed in Section 2.1),
while solving the inference problem pθ (v|z). To address this inference, we propose to optimize

the parameters ψ of a transform fψ so that v = fψ(z) + e, where e ∼ N (0, Cv) models the

inference error as a zero-mean additive Gaussian noise with covariance Cv. Here, we assume that the

covariance decomposes into Cv−1 = ∑i exp(λi)Qi, where Qi are fixed basis functions and the λ are

hyperparameters. Therefore, the full joint likelihood that we will optimize is given by

L fψ,λ = log

pθ (v| fψ, λ, z)pθ (fψ|z)pθ (λ|z)

. (10)

If we know the optimal transform fψ and parameters λ, the likelihood of the data is

pθ (v | fψ, λ, z) = N (v; fψ(z), Cv) (11)

However, the two posteriors pθ (fψ|z) and pθ (λ|z) remain intractable in the general case. In order

to solve this issue, we rely again on variational inference by defining an approximation qφ(fψ, λ|v, z)

and assume that it factorizes as q(fψ, λ|v, z) = q(fψ|v, z)q(λ|v, z). Therefore, our complete inference is

L fψ,λ = log

pθ (v| fψ, λ, z)

+ DKL

qφ(fψ|z, v) pθ (fψ|z)

+ DKL

qφ(λ|z, v) pθ (λ|z)

(12)

Hence, we can optimize our approximations through the KL divergence if we find a closed form.

To solve for λ, we use a Gaussian distribution for both the prior pθ (λ|z) = N (λ, µλ, Cλ) and posterior

qφ(λ|z, v) = N (λ, µq, Cq). Hence, we obtain a simple analytical solution for λ. However, the second

part of the objective might be more tedious. Indeed, to perform an accurate inference, we need to rely

on a complicated non-linear function, which cannot be assumed to be Gaussian. To address this issue,

we introduce the idea of regression flows. We consider that the transform fψ(z) is a normalizing flow

(see Section 2.1) and provides two different ways of optimizing this approximation.

3.2.1. Posterior Parameterization

First, we follow a reasoning akin to the original formulation of normalizing flows by

parameterizing the posterior qφ(fψ|z, v) with a flow to obtain qk(vk). Hence, by developing the

KL expression, we obtain

" k
∂ fi

Hence, we can now safely rely on Gaussian priors for q0(v0) and p(vk). This formulation allows

to consider v as a transformed version of z, while being easily invertible as z = f −1 (v). We denote

this version as Flowpost.

3.2.2. Conditional Amortization

Here, we consider that the parameters ψ of the flow are random variables that are optimized by

decomposing the posterior KL objective as

" k
∂ fi

As we rely on Gaussian priors for the parameters, this additional KL term can be computed easily.

In this version, denoted Flowcond, parameters of the flow are sampled from their distributions before

computing the resulting transform.

DKL qφ(fψ|z, v) p(fψ|z) = Eq0 [log q0(v0)] − Eq0 [log p(vk)] − Eq0

DKL qφ(fψ|z, v) p(fψ|z) = DKL qφ(ψ|z) p(ψ|z) + Eq0 (v0)

American Journal of Applied Sciences Volume 15, Issue 1, 2025

log p(z) − ∑ log det
∂zi 1

 − log p(zt∗)
i=1 —

3.3. Disentangling Flows for Semantic Dimensions

Based on the previous formulation, we can reintroduce the semantic tags in the model by expanding

latent factors z with a categorical variable t. Hence, we define the generative process pθ (x|t, z) where

p(t) = Cat(t|π) and p(π) is the prior distribution of the tags. We define the inference model as

qφ(z, t|x) and assume that it factorizes as qφ(z, t|x) = qφ(z|x)qφ(t|x). In order to handle the fact that

tags are not always observed, we define a model similar to [18]. When t is unknown, it is considered

as a latent variable over which we can perform posterior inference

Lu = −E [log pθ (x|t, z) + log pθ (t) + log pθ (z)] − E

log qφ(t, z|x)

When tags t are known, we take a rather unusual approach through the idea of disentangling flows.

As we seek to obtain a latent dimension with continuous semantic control, we define a tag pair as a set

of negative t− and positive t+ samples. We define two target distributions p(zt−) ∼ N (−µ∗, σ−) and

p(zt+) ∼ N (+µ∗, σ+) that model samples of a semantic pair as opposite sides of a latent dimension.

Hence, we turn the treatment of tags into a density estimation problem, where we aim to match tagged

samples t∗ densities to given explicit target densities by minimizing DKL qφ(zt∗ |x) p(zt∗) . To solve

this, we consider that qφ(zt∗ |x) is parameterized by a normalizing flow fk applied to the latent z,

leading to our final objective

" k
∂ fi

This formulation enforces a form of supervised disentanglement, where some of the latent

dimensions z are transformed to provide controls with explicit semantic target properties. The final

bound is defined as the sum of both objectives L = Lo + Lu and the complete model is obtained by

integrating regression and disentangling flows together.

4. Experiments

4.1. Dataset

4.1.1. Synthesizer Sounds Dataset

We constructed a dataset of synthesizer sounds and corresponding parameters, by using an

off-the-shelf commercial VST synthesizer Diva developed by U-He (https://u-he.com/products/

diva/). It should be noted that our model can hypothetically work for any synthesizer, as long

as we can produce couples of (audio, parameters) as input. We selected Diva as (i) almost all its

parameters can be MIDI-controlled, (ii) large banks of presets are readily available, and (iii) presets

include well-organized semantic tags pairs. The factory presets for Diva and additional presets from

the internet were collected, leading to a total of roughly 11k files. We manually established the

correspondence between synth and MIDI parameters as well as the parameters values range and their

distributions. We only kept continuous parameters and normalize each of these parameters so that

their values lie in the range [0, 1]. All other parameters are set to their fixed default value. Finally,

we performed parameter selection by computing the PCA of the parameters value for the whole presets

dataset. We sorted the contribution of each parameter to the principal components that explain more

than 80% of the variance and performed manual screening to select increasing sets of the most used 16,

32 and 64 parameters. We use RenderMan (https://github.com/fedden/RenderMan) to batch-generate

all the audio files by playing a C4 note for 3 s. and recording for 4 s. to capture the release of the note.

The files are saved in 22,050 Hz and 16-bit floating point format.

Lo = DKL qφ(zt∗) p(zt∗) = E (13)

https://u-he.com/products/diva/
https://u-he.com/products/diva/
https://github.com/fedden/RenderMan

American Journal of Applied Sciences Volume 15, Issue 1, 2025

4.1.2. Audio Processing

For each sample, we compute a 128 bins Mel-spectrogram with a FFT of size 2048 ms. with a hop

of 1024 ms. and frequency range of [30, 11,000] Hz. We only keep the magnitude of the spectrogram

and perform a log-amplitude transform. The dataset is randomly split between a training (80%),

validation (10%), and test (10%) set before each training. We repeat the training k = 5 times to perform

k-fold cross-validation. Finally, we perform a corpus-wide zero-mean unit-variance normalization

over the whole spectrogram based on the train set.

4.1.3. Metadata

Diva presets often contain useful metadata tags called characteristics that define high-level semantic

properties of the audio output. Interestingly, these are well organized and defined as opposite pairs

with clear concepts such as [Bright, Dark] or [Soft, Aggressive]. We retained a set of 10 such pairs and add

the Unknown category for each pair when no tag of the pair is present (as presets may have multiple

characteristics). Therefore, the final dataset is composed of triplets containing (synthesized audio

output, parameters vector, semantic tags metadata).

4.2. Models

4.2.1. Baseline Models

In order to evaluate our proposal, we implemented several feed-forward deep models that take

the complete spectrogram xi of a sample as input and try to infer the corresponding parameters vi.

All these models are trained with a Mean-Squared Error (MSE) loss between the output of the model

and the parameters vector. First, we implement a 5-layers MLP with 2048 hidden units per layer,

Exponential Linear Unit (ELU) activation, batch normalization and dropout with p = 0.3. This model

is applied on a flattened version of the input and the final layer is a sigmoid activation. We implement

a convolutional model composed of 5 layers with 128 channels of strided dilated 2-D convolutions

with kernel size 7, stride 2, and an exponential dilation factor of 2l (starting at l = 0) with batch

normalization and ELU activation. The convolutions are followed by a 3-layers MLP of 2048 hidden

units with the same properties as the previous model. Finally, we implemented a Residual Network

(denoted ResCNN), with parameters settings identical to CNN, while the residual paths are defined

as simple 1x1 convolution that maps to the same size.

4.2.2. Our Proposal

We implemented various *AE architectures, which are defined through two training losses. First,

the traditional AE training is performed by using a MSE reconstruction loss on the spectrograms.

We use the previously described CNN setup for both encoders and decoders. However, we halve their

number of parameters (by dividing the number of units and channels) to perform a fair comparison by

obtaining roughly the same capacity as the baselines. All AEs map to latent spaces of dimensionality

equal to the number of synthesis parameters. For all these architectures, a second network is used to

try to infer the parameters vi based on the latent code zi obtained by encoding a specific spectrogram xi.

For this part, we train all simple AE models with a 2-layers MLP of 1024 units to predict the parameters

based on the latent space, with a MSE loss. First, we implement a simple deterministic AE without

regularization. We implement the VAE by adding a KL regularization to the latent space and the WAE

by replacing the KL by the MMD. Finally, we implement VAEf low by adding a normalizing flow of 16

successive IAF transforms to the VAE posterior. We perform warmup [11] by linearly increasing the

latent regularization β from 0 to 1 for 100 epochs. Then, we use regression flows (Flowreg) by adding

them to VAEf low, with an IAF of length 16 without tags. In both cases, we introduce the regression

objective only after 100 epochs and also apply warmup. Finally, we add the disentangling flows (Flowdis)

by adding our objective defined in Section 3.3.

American Journal of Applied Sciences Volume 15, Issue 1, 2025

4.2.3. Optimization Aspects

We train all models for 500 epochs with the ADAM optimizer, an initial learning rate of 0.0002,

Xavier initialization of the weights and a scheduler that halves the learning rate if the validation loss

stalls for 20 epochs. With this setup, the complete model (VAEf low with regression) only needs 5 h to

complete training on a NVIDIA Titan Xp GPU.

5. Results

5.1. Parameters Inference

First, we compare the accuracy of all models on the parameters inference task by computing

the magnitude-normalized Mean Square Error (MSEn) between predicted and original parameters

values. We average these results across folds and report variance. We also evaluate the distance

between the audio synthesized from the inferred parameters and the original audio with the Spectral

Convergence (SC) distance (magnitude-normalized Frobenius norm) and MSE (it should be noted

that these measures only provide a global evaluation of spectrogram similarity, and that perceptual

aspects of the results should be evaluated in human listening experiments that are left for future work).

We provide evaluation results for 16, 32, and 64 parameters on the test set in Table 1.

Table 1. Comparison between baselines, *AEs, and our flows on the test set with 16, 32, and 64

parameters. We report across-folds mean and variance for parameters (Mean-Squared Error [MSEn])

and audio (Spectral Convergence [SC] and MSEn) errors. The best results are indicated in bold.

Test Set—16 Parameters Test Set—32 Parameters Test Set—64 Parameters

Params Audio Params Audio Params Audio

MSEn SC MSEn MSEn SC MSEn MSEn SC MSEn

MLP 0.236 ± 0.44 6.226 ± 0.13 9.548 ± 3.1 0.218 ± 0.46 13.51 ± 3.1 36.48 ± 11.9 0.185 ± 0.41 39.59 ± 6.7 49.58 ± 2.7

CNN 0.171 ± 0.45 1.372 ± 0.29 6.329 ± 1.9 0.159 ± 0.46 19.18 ± 4.7 33.40 ± 9.4 0.202 ± 0.37 52.48 ± 7.2 76.13 ± 8.9

ResNet 0.191 ± 0.43 1.004 ± 0.35 6.422 ± 1.9 0.196 ± 0.49 10.37 ± 1.8 31.13 ± 9.8 0.248 ± 0.43 29.18 ± 3.8 78.15 ± 9.8

AE 0.181 ± 0.40 0.893 ± 0.13 5.557 ± 1.7 0.169 ± 0.40 5.566 ± 1.2 17.71 ± 6.9 0.189 ± 0.37 8.123 ± 2.4 34.07 ± 2.4

VAE 0.182 ± 0.32 0.810 ± 0.03 4.901 ± 1.4 0.153 ± 0.34 5.519 ± 1.4 16.85 ± 6.1 0.171 ± 0.37 5.152 ± 1.1 33.10 ± 2.4

WAE 0.159 ± 0.37 0.787 ± 0.05 4.979 ± 1.5 0.147 ± 0.33 3.967 ± 0.88 16.64 ± 6.2 0.167 ± 0.36 8.960 ± 1.8 32.59 ± 2.1

VAEf low 0.199 ± 0.32 0.838 ± 0.02 4.975 ± 1.4 0.164 ± 0.34 1.418 ± 0.23 17.74 ± 6.8 0.174 ± 0.36 6.721 ± 1.4 33.81 ± 2.3

Flowreg 0.197 ± 0.31 0.752 ± 0.05 4.409 ± 1.6 0.193 ± 0.32 0.911 ± 1.4 16.61 ± 7.4 0.178 ± 0.37 4.794 ± 1.8 34.49 ± 2.2

Flowdis. 0.199 ± 0.31 0.831 ± 0.04 5.103 ± 2.1 0.197 ± 0.42 1.481 ± 1.8 17.12 ± 7.9 0.182 ± 0.38 8.122 ± 1.8 34.97 ± 2.3

In low parameters settings, baseline models seem to perform an accurate approximation of

parameters, with the CNN providing the best inference. Based on this criterion solely, our formulation

would appear to provide only a marginal improvement, with VAEs even outperformed by baseline

models and best results obtained by the WAE. However, analysis of the corresponding audio accuracy

tells an entirely different story. Indeed, AEs approaches strongly outperform baseline models in audio

accuracy, with the best results obtained by our proposed Flowreg (1-way ANOVA F = 2.81, p < 0.003).

These results show that, even though AE models do not provide an exact parameters approximation,

they are able to account for the importance of these different parameters on the synthesized audio.

This supports our original hypothesis that learning the latent space of synthesizer audio capabilities is

a crucial component to understand its behavior. Finally, it appears that adding disentangling flows

(Flowdis) slightly impairs the audio accuracy. However, the model still outperform most approaches,

while providing the huge benefit of explicit semantic macro-controls.

5.2. Increasing Parameters Complexity

We evaluate the robustness of different models by increasing the number of parameters from 16 to

32 and finally 64 (Table 1). As we can see, the accuracy of baseline models is highly degraded, notably

on audio reconstruction. Interestingly, the gap between parameter and audio accuracies is strongly

increased. This seems logical as the relative importance of parameters in larger sets provoke stronger

American Journal of Applied Sciences Volume 15, Issue 1, 2025

(c)

impacts on the resulting audio. Also, it should be noted that VAE∗ models now outperform baselines

even on parameters accuracy. Although our proposal also suffers from larger sets of parameters,
it appears as the most resilient and can still cope with this higher complexity. While the gap between

AE variants is more pronounced, the flows strongly outperform all methods (F = 8.13, p < 0.001).

5.3. Reconstructions and Latent Space

We provide an in-depth analysis of the relations between inferred parameters and corresponding

synthesized audio to support our previous claims. First, we selected two samples from the test set and

compare the inferred parameters and synthesized audio in Figure 3.

(a) Original Res-CNN Flow Original Res-CNN Flow (b)

Figure 3. Reconstruction analysis. Comparing parameters inference and resulting audio on the test set

with 16 (a) or 32 (b) parameters, and on the out-of-domain (c) sets composed either of sounds from other

synthesizers (left) or vocal imitations (right).

As we can see, although the CNN provides a close inference of the parameters, the synthesized

approximation completely misses important structural aspects, even in simpler instances as the simple

harmonic structure in the first example (a). This confirms our hypothesis that direct inference models

are unable to assess the relative impact of parameters on the audio. Indeed, the errors in all parameters

are considered equivalently, even though the same error magnitude on two different parameters

can lead to dramatic differences in the synthesized audio. Oppositely, even though the parameters

inferred by our proposal are quite far from the original preset, the corresponding audio is largely more

similar. This indicates that the latent space provides knowledge on the audio-based neighborhoods of the

synthesizer. Therefore, this allows to understand the impact of different parameters in a given region

of the latent audio space.

To confirm this hypothesis, we encode two random distant examples from the test set in the latent

audio space and perform random sampling around these points to evaluate how local neighborhoods

are organized. We also analyze the latent interpolation between those examples. The results are

displayed in Figure 4. As we can see, our hypothesis seems to be confirmed by the fact that

neighborhoods are highly similar in terms of audio but have a larger variance in terms of parameters.

Interestingly, this leads to complex but smooth non-linear dynamics in the parameters interpolation.

F
lo

w

O
ri
g
in

a
l

M
e
l

P
a
ra

m

American Journal of Applied Sciences Volume 15, Issue 1, 2025

zi

Audio space

Latent interpolation

Figure 4. Latent neighborhoods. We select two examples from the test set that map to distant locations in

the latent space z and perform random sampling in their local neighborhood to observe the parameters

and audio. We also display the latent interpolation between those points.

5.4. Out-Of-Domain Generalization

We evaluate out-of-domain generalization by applying parameters inference and re-synthesis on

two sets of audio samples either produced by other synthesizers, or with vocal imitations. We rely on

the same evaluation method as previously described and provide results for the audio similarity in

Table 2 (Right). Here, the overall distribution of scores remains consistent with previous observations.

However, it seems that the average error is quite high, indicating a potentially distant reconstruction

of some examples. This might be explained by the limited number of parameters used for training

our models. Therefore, they cannot account for complex sounds with various types of modulations.

Interestingly, while the addition of more parameters to perform the optimization allows to reduce the

global approximation error in AE models, it seems to worsen the feed-forward estimation. This seems to

further confirm our original hypothesis that feed-forward approaches are not able to handle advanced

interactions in the parameters.

Table 2. Comparison between baselines, *AEs, and our flows on the out-of-domain parameters inference

task. We report across-folds mean and variance for parameters (MSE) and audio (SC and MSE) errors.

Out-of-Domain (32 p.) Out-of-Domain (64 p.)

SC MSE SC MSE

MLP 2.348 ± 2.1 37.99 ± 7.8 4.534 ± 5.1 40.42 ± 3.7
CNN 2.311 ± 2.2 29.22 ± 8.2 6.329 ± 1.9 36.93 ± 2.3

 ResNet 2.322 ± 1.6 31.07 ± 9.5 4.645 ± 3.1 27.46 ± 2.3

AE 1.225 ± 2.2 27.37 ± 7.2 2.557 ± 1.7 27.16 ± 1.4

VAE 1.237 ± 1.3 27.06 ± 7.1 1.141 ± 1.2 27.15 ± 1.3
WAE 1.194 ± 1.5 26.10 ± 6.4 0.999 ± 0.9 25.13 ± 1.3

 VAEf low 1.193 ± 1.8 27.03 ± 6.4 1.022 ± 1.7 26.49 ± 1.3

 Flowreg 1.201 ± 1.2 26.07 ± 7.7 1.132 ± 1.6 24.74 ± 1.3

 Flowdis. 1.209 ± 1.4 26.77 ± 7.3 1.532 ± 1.8 27.89 ± 1.7

American Journal of Applied Sciences Volume 15, Issue 1, 2025

In order to better understand the results and limits of our proposal, we display in Figure 3 the

resynthesis of random examples taken from the synthesizer (left) and vocal imitations (right) datasets.

As we can see, in all cases, our proposal accurately reproduces the temporal spectral shape of target

sounds, even if the timbre is somewhat distant. Upon closer listening, it seems that the models fail

to reproduce the local timbre of voices but performs quite well with sounds from other synthesizers.

However, the evolution of the spectral shape is still reproduced. Interestingly, this provides a form

of vocal sketching control where the user inputs vocal imitations of the sound that he is looking for.

This allows to quickly produce an approximation of the intended sound and, then, exploring the audio

neighborhood of the sketch for intuitive refinement.

5.5. Macro-Parameters Learning

Our formulation is the first to provide a continuous mapping between the audio z and parameter v

spaces of a synthesizer. As latent VAE dimensions has been shown to disentangle major data variations,

we hypothesized that we could directly use z as macro-parameters defining the principal dimensions of

audio variations in a given synthesizer. Hence, we introduce the new task of macro-parameters learning

by mapping latent audio dimensions to parameters through p(v|z), which provides simplified control

of the major audio variations for a given synthesizer. This is depicted in Figure 5.

1

0

10
1

10
4

1

0

Figure 5. Macro-parameters learning. We show two of the learned latent dimensions z and compute

the mapping p(v|z) when traversing these dimensions, while keeping all other fixed at 0 to see how

z define smooth macro-parameters. We plot the evolution of the 5 parameters with highest variance

(top), the corresponding synthesis (middle), and audio descriptors (bottom). (Left) z3 seems to relate

to a percussivity parameter. (Right) z7 defines a form of harmonic densification parameter.

We show the two most informative latent dimensions z based on their variance. We study

the traversal of these dimensions by keeping all other fixed at 0 to assess how z defines smooth

macro-parameters through the mapping p(v|z). We report the evolution of the 5 parameters with

highest variance (top), the corresponding synthesis (middle) and audio descriptors (bottom).

First, we can see that latent dimension corresponds to very smooth evolutions in terms of

synthesized audio and descriptors. This is coherent with previous studies on the disentangling abilities

of VAEs [6]. However, a very interesting property appear when we map to the parameter space.

Although the parameters evolution is still smooth, it exhibits more non-linear relationships between

different parameters. This correlates with the intuition that there are lots of complex interplays in

parameters of a synthesizer. Our formulation allows to alleviate this complexity by automatically

providing macro-parameters that are the most relevant to the audio variations of a given synthesizer.

Here, we can see that the z3 latent dimension (left) seems to provide a percussivity parameter, where low

values produce a very slow attack, while moving along this dimension, the attack becomes sharper

and the amount of noise increases. Similarily, z7 seems to define an harmonic densification parameter,

starting from a single peak frequency and increasingly adding harmonics and noise. Although the

unsupervised macro-parameters provide some clear effects on the synthesis, it appears that they do

z3

z7
VCF: Feed.

OSC: OscMix

OSC: Shape1

OSC: Tune2

VCF: Reson.

Bandwidth

 D
e
s
c
ri
p
to

rs

S
y
n
th

P

a
ra

m
s

American Journal of Applied Sciences Volume 15, Issue 1, 2025

not act on a single aspect of the timbre. This seems to indicate that the macro-parameters still relate to

some entangled properties of the audio. Furthermore, as these dimensions are unsupervised, we still

need to define their effects through direct exploration. Additional macro-parameters are discussed on

the supporting webpage of this paper.

5.6. Semantic Parameter Discovery

Our proposed disentangling flows can steer the organization of selected latent dimensions so that

they provide a separation of given tags. As this audio space is mapped to parameters through p(v|z),

this turns the selected dimensions into macro-parameters with a defined semantic meaning. To evaluate
this, we analyze the behavior of corresponding latent dimensions, as depicted in Figure 6.

1

0
10

1

10
4

-3 Calm Aggressive +3

1

0
10

1

10
4

-3 Constant Moving +3

Figure 6. Semantic macro-parameters. Two latent dimensions z learned through disentangling flows

for different pairs. We show the effect on the latent space (left) and parameters mapping p(v|z)

when traversing these dimensions, that define smooth macro-parameters. We plot the evolution of 6

parameters with highest variance and the resulting synthesized audio (right).

First, we can see the effect of disentangling flows on the latent space (left), which provide a
separation of semantic pairs. We study the traversal of semantic dimensions while keeping all other

fixed at 0 and infer parameters through p(v|z). We display the 6 parameters with highest variance and

the resulting synthesized audio. As previously observed for unsupervised dimensions, the semantic

latent dimensions also seem to provide a very smooth evolution in terms of both parameters and
synthesized audio. Regarding the precise effect of different semantic dimensions, it appears that

the [‘Constant’, ‘Moving’] pair provides a very intuitive result. Indeed, the synthesized sounds are

mostly stationary in extreme negative values, but gradually incorporate clearly marked temporal

modulations. Hence, our proposal appears successful to uncover semantic macro-parameters for a

given synthesizer. However, the corresponding parameters are quite harder to interpret. The [‘Calm’,

‘Aggressive’] dimension also provides an intuitive control starting from a sparse sound and increasingly

adding modulation, resonance and noise. However, we note that the notion of ‘Aggressive’ is highly

subjective and requires finer analyses to be conclusive.

5.7. Creative Applications

Our proposal allows to perform a direct exploration of presets based on audio similarity. Indeed,

as the flow is invertible, we can map parameters to the audio space for exploration, and then back

to parameters to obtain a new preset. Furthermore, this can be combined with vocal sketch control

where the user inputs vocal imitations of the sound that he is looking for. In order to allow creative
experiments, we implemented all the models and interactions detailed in this paper in an experimental

Max4Live interface that is displayed in Figure 7. We embedded our models inside MaxMSP by using

an OSC communication server with the Python implementation. We further integrate it into Ableton Live

VCF: Feedback OSC: Volume 3

VCF: FilterFM ENV1: Attack

VCF: Resonance ENV1: Sustain

VCF: FMDepth

ENV2: Release

LFO1: Rate

OSC: Tune3

OSC: FM

OSC: Shape1

L
a
te

n
t
s
p
a
c
e

d
is

e
n
ta

n
g
lin

g

L
a
te

n
t
s
p
a
c
e

d
is

e
n
ta

n
g
lin

g

S
y
n
th

P

a
ra

m
s

S
y
n
th

P

a
ra

m
s

American Journal of Applied Sciences Volume 15, Issue 1, 2025

by using the Max4Live interface. This interface wraps the Diva VST and allows to provide control based

on all of the proposed models. Hence, this interface allows to input a wave file or direct vocal recording

to perform parameter inference. The model can provide the VST parameters for the approximation

in less than 30 ms on a CPU. The interface also provides a representations of the projected latent

audio space, onto which is plotted the preset library. This allows to perform audio-based preset

exploration, but also to draw paths between different presets or simply across the audio space. By

freely exploring the dimensions, the user can also experiment the unsupervised macro-control and also

explore supervised semantic dimensions. Finally, we implemented an interaction with the Leap Motion

controller, which allows to directly control the synthesized sound with one’s hand.

Figure 7. FlowSynth interface for audio synthesizer control in Ableton Live. The interface wraps a

given VST, and allows to perform direct parameters inference, audio-based preset exploration and

relying on both semantic and unsupervised macro-controls learned by our model.

6. Conclusions

In this paper, we discussed several novel ideas based on our recent novel formulation of the

problem of synthesizer control as matching the two latent spaces defined as the audio perception space

and the synthesizer parameter space. To solve this new formulation, we relied on VAEs and Normalizing

Flows to organize and map the auditory and parameter spaces of a given synthesizer. We introduced

the disentangling flows, which allow to obtain an invertible mapping between two separate latent

spaces, while steering the organization of some latent dimensions to match target variation factors by

splitting the objective as partial density evaluation.

We showed that our approach outperforms all previous proposals on the seminal problem of

parameters inference, and that it is able to provide an interesting approximation to any type of sound in

almost real-time, even on a CPU. We showed that for sounds that are not produced by synthesizers,

our model is able to match the evolution of the spectral shape quite well, even though the local

timbre is not well approximated. We further showed that our formulation also naturally introduces

various original and first-of-kind tasks of macro-control learning, audio-based preset exploration, and

semantic parameters discovery. Hence, our proposal is the first to be able to simultaneously address

most synthesizer control issues at once, while providing higher-level understanding and controls.

In order to allow for usable and creative exploration of our proposed methods, we implemented

a Max4Live interface that is available freely along with the source code of all approaches on the

supporting webpage of this paper.

Altogether, we hope that this work will provide new means of exploring audio synthesis, sparking

the development of new leaps in musical creativity.

Author Contributions: Conceptualization, P.E. and A.B.; Data curation, N.M. and R.D.; Formal analysis, P.E. and
A.C.-R.-S.; Funding acquisition, P.E.; Investigation, P.E., N.M., R.D. and A.C.-R.-S.; Methodology, P.E., N.M., A.B.
and A.C.-R.-S.; Project administration, P.E.; Resources, A.B.; Software, P.E., N.M. and R.D.; Validation, A.C.-R.-S.;
Visualization, N.M.; Writing—original draft, P.E. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the MAKIMOno project funded by the French ANR and Canadian NSERC
(ANR:17-CE38-0015-01 and NSERC:STPG 507004-17) and also the ACTOR Partnership funded by the Canadian
SSHRC (SSHRC:895-2018-1023). This work was also supported by an NVIDIA GPU Grant and GPU Center grant.

Conflicts of Interest: The authors declare no conflict of interest.

American Journal of Applied Sciences Volume 15, Issue 1, 2025

References

1. Puckette, M. The Theory and Technique of Electronic Music; World Scientific Publishing Co.: Singapore, 2007.

2. Cartwright, M.; Pardo, B. Synthassist: An audio synthesizer programmed with vocal imitation.

In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, FL, USA, 3–7 November

2014; pp. 741–742.

3. Garcia, R.A. Automatic design of sound synthesis techniques by means of genetic programming. In Audio

Engineering Society Convention; Audio Engineering Society: New York, NY, USA, 2002.

4. Yee-King, M.J.; Fedden, L.; d’Inverno, M. Automatic Programming of VST Sound Synthesizers Using Deep

Networks and Other Techniques. IEEE Trans. ETCI 2018, 2, 150–159. [CrossRef]

5. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.

6. Higgins, I.; Matthey, L.; Pal, A.; Mohamed, S.; Lerchner, A. Beta-Vae: Learning Basic Visual Concepts with a

Constrained Variational Framework. ICLR. 2016. Available online: https://pdfs.semanticscholar.org/a902/

26c41b79f8b06007609f39f82757073641e2.pdf (accessed on 27 September 2019).

7. Rezende, D.; Mohamed, S. Variational Inference with Normalizing Flows. In Proceedings of the International

Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015.

8. Esling, P.; Bitton, A.; Chemla-Romeu-Santos, A. Generative timbre spaces with variational audio synthesis.

arXiv 2018, arXiv:1805.08501.

9. Esling, P.; Masuda, N.; Bardet, A.; Despres, R.; Chemla-Romeu-Santos, A. Universal audio synthesizer

control with normalizing flows. In Proceedings of the 22nd International Conference on Digital Audio

Effects (DaFX), Birmingham, UK, 2–6 September 2019.

10. Bishop, C.M.; Mitchell, T.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2014.

11. Sønderby, C.K.; Raiko, T.; Maaløe, L.; Sønderby, S.K.; Winther, O. How to train deep variational autoencoders

and probabilistic ladder networks. arXiv 2016, arXiv:1602.02282.

12. Chen, X.; Kingma, D.P.; Salimans, T.; Sutskever, I.; Abbeel, P. Variational lossy autoencoder. In Proceedings

of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016.

13. Tolstikhin, I.; Bousquet, O.; Schölkopf, B. Wasserstein Auto-Encoders. In Proceedings of the International

Conference on Learning Representations, Toulon, France, 24–26 April 2017.

14. Kingma, D.P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; Welling, M. Improved Variational Inference

with Inverse Autoregressive Flow. Advances in NIPS. 2016. pp. 4743–4751. Available online: https://papers.

nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf (accessed on

27 December 2019).

15. Papamakarios, G.; Pavlakou, T.; Murray, I. Masked Autoregressive Flow for Density Estimation. NIPS.

2017. pp. 2338–2347. Available online: http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-

density-estimation.pdf (accessed on 27 December 2019).

16. Roth, M.; Yee-King, M. A comparison of parametric optimization techniques for musical instrument tone

matching. In Audio Engineering Society Convention 130; Audio Engineering Society: New York, NY, USA, 2011.

17. Garcia, R. Growing sound synthesizers using evolutionary methods. In Proceedings ALMMA 2001: Artificial

Life Models for Musical Applications Workshop, (ECAL 2001); Citeseer: Prague, Czech Republic, 2001.

18. Kingma, D.P.; Mohamed, S.; Rezende, D.J.; Welling, M. Semi-Supervised Learning with Deep Generative

Models. Advances in Neural Information Processing Systems. 2014. pp. 3581–3589. Available online: http:

//papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf (accessed on

27 December 2019).

http://dx.doi.org/10.1109/TETCI.2017.2783885
https://pdfs.semanticscholar.org/a902/26c41b79f8b06007609f39f82757073641e2.pdf
https://pdfs.semanticscholar.org/a902/26c41b79f8b06007609f39f82757073641e2.pdf
https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation.pdf
http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation.pdf
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf

