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Abstract: Estimating the solubility of carbon dioxide in ionic liquids, using reliable models, is of 

paramount importance from both environmental and economic points of view. In this regard, 

the current research aims at evaluating the performance of two data-driven techniques, namely 

multilayer perceptron (MLP) and gene expression programming (GEP), for predicting the solubility 

of carbon dioxide (CO2) in ionic liquids (ILs) as the function of pressure, temperature, and four 

thermodynamical parameters of the ionic liquid. To develop the above techniques, 744 experimental 

data points derived from the literature including 13 ILs were used (80% of the points for training and 

20% for validation). Two backpropagation-based methods, namely Levenberg–Marquardt (LM) and 

Bayesian Regularization (BR), were applied to optimize the MLP algorithm. Various statistical and 

graphical assessments were applied to check the credibility of the developed techniques. The results 

were then compared with those calculated using Peng–Robinson (PR) or Soave–Redlich–Kwong 

(SRK) equations of state (EoS). The highest coefficient of determination (R2 = 0.9965) and the lowest 

root mean square error (RMSE = 0.0116) were recorded for the MLP-LMA model on the full dataset 

(with a negligible difference to the MLP-BR model). The comparison of results from this model with 
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the vastly applied thermodynamic equation of state models revealed slightly better performance, 

but the EoS approaches also performed well with R2 from 0.984 up to 0.996. Lastly, the newly 

established correlation based on the GEP model exhibited very satisfactory results with overall values 

of R2 = 0.9896 and RMSE = 0.0201. 

Keywords: CO2 solubility; ionic liquids; carbon dioxide; multilayer perceptron; gene expression 

programming; prediction; equation of state; machine learning 

 

 

1. Introduction 

The natural gas produced from the subterranean gas fields and subsequently transported through 

pipelines should meet certain specifications such as environmental and safety standards as well as 

those of sale gas sectors. The products destined for sale should be free of undesirable contaminants, 

e.g., carbon dioxide (CO2) and hydrogen sulfide (H2S), which are both toxic and unfriendly from an 

environmental point of view. For instance, CO2 is considered the main contributor to global warming 

and climate change. Several treatments are employed to remove acidic gases from natural gas. The most 

famous are the alkanolamine-based treatment operations [1–3]. This technique was firstly introduced 

for carbon dioxide removal in 1991 [4,5]. The used alkanolamines are organic compounds, such as 

monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA). By far, MEA was the 

most preferred alkanolamine compared to DEA and TEA because of its reactivity, low molecular 

weight, and lower required circulation to maintain a given amine to acid-gas mole ratio. 

The gas–liquid absorption in amine-based solvents is an efficient process in gas sweetening. 

Nevertheless, some imperfections have been observed, such as the creation of corrosive byproducts 

due to the amine degradation, water transfer to the gas stream during the desorption stage, and loss of 

the feedstock (amine), making the treatment operations expensive [6–10]. As an alternative, a new 

class of non-aqueous and environmentally friendly innovating fluids, known as ionic liquids (ILs), 

has emerged. ILs have many industrial applications such as catalysis for clean technology [11] and 

the removal of contaminants from refinery feedstock [12]. Furthermore, Ion Engineering Company is 

intended to use the know-how of ionic liquids for industrial-scale sweetening of natural gas and flue 

gas CO2 separation [13,14], as stated by Hasib-ur-Rahman et al. [15]. 

Ionic liquids are molten salts, which are liquid (non-volatile) at room temperature. They are 

comprised exclusively of positively and negatively charged ions. Due to their bulky and asymmetrical 

cation structure, ILs have a low affinity to constitute crystals [16]. Manipulation of the cation and/or 

anion allows designing ILs adaptable to any particular application requirements [17]. Moreover, ILs are 

a perfect medium for acid gas solubilization over wide ranges of temperature and pressure. Thus, great 

attention was paid to evaluate the performance of ILs as a gas-cleaning agent in gas refinery plants [10]. 

The only and the most discussed disadvantage related to the use of ILs is their high viscosity, but it can 

be bypassed as the viscosity can be regulated over a reasonable range of about <50 cP to >10,000 cP by 

selecting an adequate mixture of cation and anion [15]. 

In the past few years, many experimental studies were conducted to estimate the solubility of 

acid gases in ILs [1,6,8,10,18,19], especially the carbon dioxide solubility [20–24]. The obtained results 

confirmed the ILs to be very efficient in carbon dioxide removal. Unfortunately, the experimental 

studies require many laboratory tests, which are expensive, difficult, tedious, and time-consuming. 

As an alternative strategy, the solubility of acid gases in ILs has been modeled using thermodynamical 

laws and the equation of state (EoS). The thermodynamic laws used for modeling the solubility of acid 

gases in ILs can be divided into four groups that include cubic equations, quantum mechanics-based 

methods, activity coefficient methods, and statistical mechanics-based molecular approaches [25]. 

The most used models are the Peng–Robinson equation of state (EoS), the generic Van der Waals EoS, 

the generalized Redlich–Kwong cubic EoS, the law and extended law of Henry, and the equation of 
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Krichevsky–Kasarnovsky [8,26–32]. It was noticed that the models describe well the systems at low and 

moderate pressures [33], however, the equations of state suffer from many weaknesses. The equation 

of state can be reliable only for an individual system and not for more interestingly, multiple systems. 

They require various adjustable parameters, which should be optimized based on real data within a 

particular and limited range of thermodynamic conditions. Consequently, developing more general 

and powerful models to predict the solubility of acid gases, especially carbon dioxide, in ILs is of 

paramount importance. 

Recently, many soft computing methods have been applied to model gas solubility and phase 

equilibrium. One of these methods is the artificial neural network (ANN), which represents an important 

embranchment computational intelligence method that can be used without any pre-assumption of the 

input–output relationship [34,35]. Multilayer perceptron (MLP), radial basis function network (RBF), 

multi-layer feed-forward network, and gene expression programming (GEP) are the general categories 

of ANN. Fuzzy logic (FL) is also one of the computational intelligence methods, which can model 

complicated nonlinear relations [36]. Likewise, the support vector machine (SVM) proposed by Vapnik 

was shown to be a very performant smart model [37]. Several researchers have used these smart 

models in the petroleum industry and to predict the solubility of acid gases in ILs. Baghban et al. [36] 

have predicted CO2 solubility in the presence of various ILs using MLP and Adaptive Neuro-Fuzzy 

Inference System (ANFIS). Amedi et al. [38] have used MLP, RBF, and ANFIS to predict H2S solubility 

in the presence of various ILs. Otherwise, in 2017, Rostami et al. [39] have applied the GEP method to 

model CO2 solubility in crude oil during carbon dioxide enhanced oil recovery. 

The current work aims at developing highly robust and easy-to-use machine learning models 

that can be applied for forecasting the solubility of CO2 in 13 different ionic liquids at different 

temperature and pressure conditions. Two rigorous connectionist techniques, namely multilayer 

perceptron (MLP), and gene expression programming (GEP) are applied on a set of experimental data 

that was gathered from different literature sources [40–44]. The MLP method was optimized using 

either Levenberg–Marquardt (LMA) or Bayesian Regularization (BR) techniques. The results obtained 

using three methods (MLP-LMA, MLP-BR, GEP) are then compared with results calculated using 

thermodynamic models based on Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) equation of 

states. Statistical indicators, including the determination coefficient (R2) and Root Mean Square Error 

(RMSE), are used to evaluate the accuracy of the methods, in addition to graphical assessments using 

cross plots and bar plots. In the end, outliers detection is performed to test and analyze the validity of 

the best-developed model and quantify the doubtful experimental points from the database. It is worth 

noting that the two backpropagation-based learning algorithms (LMA and BR) that were employed in 

the training process of MLP, alongside the explicit correlations established to predict the CO2 solubility 

in ILs, make the current work different from previously published works in the literature. 

This paper is constructed as follows; Section 2 depicts the data used in the study and the input and 

output parameters in the models. Section 3 describes in detail the rigorous connectionist models and 

optimization techniques. An overview of the PR and SRK equations of state is presented in Section 4. 

In Section 5, the results are presented and discussed, and in Section 6, the conclusions of the study 

are summarized. 

2. Data Collection and Preparation 

In order to develop reliable models, it was crucial to use a large number of experimental data 

points representing a variety of conditions. In the current work, 744 experimental data points for 

carbon dioxide solubility in 13 different ILs (36 to 80 points for each IL) were collected from the 

literature [40–44]. Table 1 presents the references from where the data were gathered and the observed 

range of experimental measurements. The dissolved mole fraction (termed x) of CO2 in each IL was 

the parameter we wished to match and predict based on the corresponding input of temperature T, 

pressure P, and the given IL. To represent the IL, we specified the thermodynamic properties of the IL, 

including molecular weight (Mw), critical temperature (Tc), critical pressure (Pc), and acentric factor 
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(w), as summarized in Table 2. These 6 input parameters were hence used for predicting the dissolved 

mole fraction x of CO2. All the 744 experimental data points were randomly divided into a training 

data set (80% of the database) and a test data set (20% of the database). 

Table 1. Ranges of observed temperature, pressure, and CO2 solubility measurements of the ionic 

liquids used in this study. 
 

No. Ionic Liquid 
Temperature 

Pressure Range CO2 Solubility Range (Mole 
No. of Data 

References 

  Range (K) (MPa) Fraction) Points  

1 [C3mpy][Tf2N] 303.15–373.15 0.52–47.1 0.186–0.787 56 [40] 

2 [bmmim][tf2N] 298.15–343.15 0.01–1.9 0.002–0.382 36 [41] 

3 [P(5)mpyrr][Tf2N] 298.15 0.01–1.9 0.002–0.406 36 [41] 

4 [HMIM][Tf2N] 303.15–373.15 0.42–45.28 0.165–0.824 64 [42] 

5 [HMIM][TfO] 303.15–373.15 1.42–100.12 0.267–0.816 64 [42] 

6 [HMIM][BF4] 303.15–373.15 1.2–41.69 0.212–0.622 48 [42] 

7 [HMIM][MeSO4] 303.15–373.15 0.87–50.14 0.158–0.602 48 [42] 

8 [HMIM][PF6] 303.15–373.15 0.3–55.63 0.216–0.691 48 [42] 

9 [C2mim][SCN] 303.15–373.15 1.3–95.34 0.169–0.474 72 [43] 

10 [C2mim][N(CN)2] 303.15–373.15 0.88–96.2 0.171–0.585 80 [43] 

11 [C2mim][C(CN)3] 303.15–373.15 0.59–88.29 0.17–0.503 80 [43] 

12 [BMP][Tf2N] 303.15–373.15 0.68–62.77 0.2276–0.8029 72 [44] 

13 [BMP][MeSO4] 303.15–373.15 3.07–97.3 0.2871–0.6049 40 [44] 

 

Table 2. Thermodynamic properties of ionic liquids (ILs) used in this study. 
 

No. Ionic Liquid Mw (kg/kmole) Tc (K) Pc (MPa) Acentric Factor w (-) References 

1 [C3mpy][Tf2N] 408.38 1196.86 2.6749 0.2753 [40] 

2 [bmmim][tf2N] 433.4 1255.8 2.031 0.3193 [41] 

3 [P(5)mpyrr][Tf2N] 436.4 1221.9 1.828 0.2603 [41] 

4 [HMIM][Tf2N] 447.92 1292.78 2.3888 0.3893 [42] 

5 [HMIM][TfO] 316.34 1055.6 2.4954 0.489 [42] 

6 [HMIM][BF4] 278.37 1110.84 2.9611 0.4899 [42] 

7 [HMIM][MeSO4] 254.08 716.61 1.7941 0.6589 [42] 

8 [HMIM][PF6] 312.24 759.16 1.5499 0.9385 [42] 

9 [C2mim][SCN] 169.25 1013.63 2.226 0.3931 [43] 

10 [C2mim][N(CN)2] 177.21 998.96 2.9108 0.7661 [43] 

11 [C2mim][C(CN)3] 201.23 1149.26 2.4591 0.8509 [43] 

12 [BMP][Tf2N] 422.41 1209.16 2.48 0.32 [44] 

13 [BMP][MeSO4] 253.36 1023.74 3.09 0.42 [44] 

 

3. Modeling Techniques 

3.1. Multilayer Perceptron (MLP) 

Artificial neural network (ANN) is one of the well-known machine learning tools, which exhibits 

reliable ability for recognizing and identifying relationships between input and output parameters 

in complex systems [45]. The conception and the mathematical formulation of an ANN model were 

inspired by the human brain and its strategy for processing information. Multilayer perceptron (MLP) 

is one of the most applied types of ANN for modeling purposes. 

An MLP model includes three kinds of layers, an input layer: From which the inputs enter into 

the model. The ith input parameter of the model is noted zi. 

One or more hidden layers: Their role is to transform the inputs into a higher feature in order to 

capture the non-linearity of the system. This mechanism is done by means of the activation functions. 

Tansig and logsig are among the frequently applied transfer functions and they are defined as follows: 

1 
Logsig : g(z) = 

 

Tansig : g(z) = 

ez + 1 
(1) 

ez − e−z 

(2) 
ez + e−z 

An output layer: The outputs of the model are returned from this layer. Pureline is generally 

considered the transfer function for this layer. 

Pureline : f (z) = z (3) 
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If the total number of hidden layers is considered to be M, the input layer is defined as layer 0. 

Suppose that the number of neurons in the hidden layer m is Nm, m = 1, 2, . . . , M. Considered wm 

the weight of the linkage between the jth neuron of the m 1 th hidden layer and ith neuron of the mth 

hidden layer, and bm the bias term of ith neuron of the mth hidden layer. Hence, the output (ym) of ith 
i i 

neuron of the mth hidden layer can be determined using the following equation: 

 
N,m−1 

ym = f  
 
 

wm·ym−1 + bm   
(4) 

i  i j  i 

j = 1 
i  

 
 

0 
= zi, i = 1, . . . , Nz, Nz = N0 (5) 

Each of the above-mentioned layers includes neurons. The number of neurons in the input and 

output layers corresponds to the number of input and output parameters of the system, respectively. 

The number of hidden layers and their neurons depends on the complexity of the system. Generally, 

one hidden layer is sufficient to model systems having moderate complexity, while more than one 

hidden layer is recommended for highly complex systems. The trial and error method is usually 

applied for the proper determination of the number of hidden layers and their numbers of neurons. 

The training phase of an MLP model consists of determining appropriate values for the weights 

and bias terms that result in the minimization of the difference between the experimental data (measured 

dissolved CO2 mole fraction) and the predictions of the model (calculated CO2 mole fraction as a 

function of the input parameters). Backpropagation learning techniques were applied for the training of 

the MLP model, namely the Bayesian Regularization (BR) and Levenberg–Marquardt (LM) algorithms. 

More details about these two algorithms can be found in prior published works [46–48]. 

3.2. Gene Expression Programming (GEP) 

In spite of computer-based artificial intelligent models, based genetic calculations, such as genetic 

programming (GP) can construct formulas, which have high precision. It has been demonstrated that 

GP can be more accurate than traditional empirical models. Furthermore, models developed by genetic 

calculations and simulators and software systems are easy to use [49]. 

Using correction and development of the GP method [50] led to a more relevant version, which 

was GEP [51]. Indeed, the latter removed the found weaknesses in GP, i.e., the big number of possible 

programs that can be built by the algorithm and the high sensitivity to small changes in fitness of the 

created solution. In general, the GEP [51] had 2 significant parts: The chromosome and the symbolic 

expression trees (ETs). The chromosome encoded the potential solutions, and after that, these solutions 

were converted to the particular applicant solution named ET [52–54]. Reliable ETs continuously 

were reproduced by unlimited genetic conversions because of the conversion method of the structural 

organization of the chromosome to the ET [52]. In fact, the unique genes’ placements in the GEP 

method produced impressive development of the solutions leading to encryption of any downside [55]. 

Preceding researches recognized that the speed of convergence in the GEP scheme was much more 

than the GP scheme [53,54]. 

The chromosome included unchanging factors and variables as terminals and predetermined 

functions with equal length in one or more genes [52]. By the user, the constants were produced by the 

GEP in a specific range, however, the functions and variables were the input information. Each gene 

consisted of a tail, which comprised terminals and also a head that contained constants and variables 

in the role of terminals and functions [52]. The given value of the gene’s head is taken into account as 

an input of the GEP method, and the value of gene’s tail (t) is given by the following equation: 

t = h(r − 1) + 1 (6) 

with t denotes the length of the tail, h is the length of the head, and r is the number of arguments of the 

function with the most arguments. 
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The essential stages of the GEP method are illustrated in Figure 1. These steps can be elucidated 

briefly as follows: Firstly, a generation of chromosomes of an initial population was created randomly. 

In a second step, the chromosomes were expressed with ET, and their fitness was computed. Then, the 

individuals were selected to perform reproduction based on their fitness values. This reproduction 

created offspring with fresh signs. The same procedure was followed by individuals of the resulted 

generation, i.e., genomes expression, selection, and reproduction with adjustment. The stages expressed 

above were repeated until reaching the stopping criteria. More explanation of the GEP technique can 

be found in the literature [51,55]. 

 

Figure 1. Flowchart of gene expression programming (GEP) algorithm procedure. 

In the current work, the mathematical expression used to predict the CO2 solubility in ILs was 

generated in the following form: xCO2 = f (T, P, Tc, IL, Pc, IL and wIL). 

3.3. Techniques Evaluation 

Statistical indicators alongside the graphical techniques were used to assess the performance and 

robustness of the proposed models. The statistical indicators include root mean square error (RMSE) 

and the coefficient of determination (R2), which is defined mathematically as follows: 

 

RMSE = 

v, 
1 ,

n 

n 
i = 1 

 

 

xi exp − x 

 

 

i pred 

 
2 (7) 

 

R2 = 1 − 

,n 
i = 1 

,n 
i = 1 

  
xi exp 

  
xi exp 

 2 
– xi pred 

 2  

– xi pred 

 

(8) 
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The credibility of the developed models was tested using the leverage statistical approach. In this 

approach, the standardized residuals, which refer to the difference between the predicted results and 

the experimental points, were presented versus the statistical Hat matrix leverage values; this graph is 

called the Williams plot. The Hat can be calculated using the Hat matrix of the following form [56,57]: 

H = 
  

t
  −1

Xt (9) 

where X is an (k d) matrix, k and d represent the dimension and the data points number, respectively, 

and Xt denotes the X transpose matrix. The limit leverage value (H*) depicted on the Williams plot 

with a purple line is a constant calculated as 3(d + 1)/k. The selection of data points is in the range of 

± 3 of the standard deviation from the mean, where the cut-off value of 3 ensures covering 99% of 

normally distributed data. The validity of the developed model and the credibility of the predictions 

were conditioned by the values of data points, which must be situated in the range of 0 ≤ H ≤ H* and 

−3 ≤ R ≤ 3. 

4. Equations of State for Modeling the Solubility of Acid Gases 

Many equations of state have been used by researchers to model the solubility of acid gases in ILs. 

Two of the most widely used EoS are the Soave–Redlich–Kwong (SRK) and the Peng–Robinson (PR) 

EoS, which are defined with Equations (10) and (15), respectively [35]. The results of these two EoS are 

used to contrast those obtained by using the proposed models. 

Noting that the calculation of solubility using EoS is related to the calculation of the mole fraction, 

the equations below express how to determine the mole fraction. 

Soave–Redlich–Kwong (SRK) EoS: 
 

P = 
 RT  

− 
  a(T)  (10) 

v − b v(v + b) 

where T, P, v, and R indicate the temperature, pressure, molar volume, and gas constant respectively, 

and a and b represent the EoS variables. 

For computing the variables, a and b in the case of mixtures, the classic van der Waals one-fluid 

rules of mixing is used [58]: 
 

,N ,N ,  ,N 

a = 
i = 1 j = 1 

xixj aiaj 1 − Kij(T) ; b =  
i = 1 

xibi (11) 

with xi and xj denote the mole fractions of components i and j, and N indicates the number of the 

mixture’s components. The parameter Kij(T) is a parameter of binary interaction, that enlarges the 

molecular interactions between molecules i and j. For pure materials, the parameters can be computed 

as follows: 

ai(T) = 0.42747 
R2Tc,i

2 

Pc,i  
αi(TR) (12) 

bi = 
0.08664RTc,i 

Pc,i 
(13) 

αi(TR) = 
h

1 +
 

0.480 + 1.574wi − 0.176wi2
 

1 − 
,
TRi

 i2 
(14) 

with TRi =  T  , denotes the reduced temperature. We note that the above description is valid for a 

system of arbitrarily many components. In our system, it was assumed that we had two components 

where CO2 was one and the IL the other. 
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Peng–Robinson (PR) EoS:  

 

P = 
 RT  

− 
 a(T)  

 

 
(15) 

 

with: 

v − b 

 
R2Tc,i

2  h   

v(v + b) + b(v − b)  
 

 
2
  

 

 
, __  i2 

ai(T) = 0.457235 
Pc,i 

∗ 1 + 0.37464 + 1.54226wi − 0.26992wi 1 − TRi (16) 

bi = 
0.077796RTc,i 

Pc,i 
(17) 

For mixtures, the parameters a and b are determined using the same formulas as in SRK EoS. 

The parameter of binary interaction (Kij) is the only adjustable parameter for both EoS, SRK, and PR. 

This parameter is determined using a genetic algorithm (GA) with the next objective function [58]: 

,N 
 exp cal 2 
 xsolute 

− x
solute  

f =  

i = 1 

exp 
 

solute 

(18) 

exp 

solute 
cal 
solute indicate the experimental and EoS-calculated mole fractions of the 

solute respectively. 

5. Computational Procedure 

For the training phase, the mean square error (MSE) was used as the assessment criterion, which 

is defined mathematically as follows: 
,n

 
x − x 

 2 

MSE = 
1  iexp ipre 

n 
(19) 

where x stands for mole fraction of CO2, exp and pred indicate the experimental and the predicted 

values, respectively, and n represents the number of samples. The model tuning parameters giving the 

lowest MSE on the training set were considered the choice for the trained model. 

For the modeling task using MLP, the data points were normalized between −1 and 1. To select 

appropriate topologies for the MLP approach, trial and error were used. The obtained models were 

designated MLP-LMA, and MLP-BR, respectively, and both included 3 hidden layers with 11, 11, 

and 9 neurons, respectively. The suitable activation functions in all the hidden layers and for the 

output layer were Tansig and Pureline, respectively. 

6. Results and Discussion 

To obtain an accurate and trustworthy expression, the calculation procedure reported in Section 3.2 

has been followed. Thus, taking into account the series of five independent parameters (T, P, Tc, Pc, w), 

the GEP-based model makes the mathematical based correlation for the dependent parameter xCO2 

as follows: 

x = 0.0001011  ×A1 + A2tanh(P) − A3 
√

P + A4 × ln(P) + 10−6 × M2 × A5 + A6 × P3  (20) 
w c 

+A7 × Tc + A8 

where P (MPa) and Pc (MPa) are pressure and critical pressure, respectively, Mw (Kg/Kmole) is the 

molecular weight, Tc (K) indicates the critical temperature and A1, A2, A3 . . . . . . and A8 are expressed 

as below: 

A1 = Pc × w + P × (Pc + w + P) (21) 

A2 = 3.362 − 0.1832 × 
√

T (22) 

x 

with x and x 
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Mw 

c 

Mw 

 

A3 = 0.4802 + 
0.08072 × T 

+ 0.03085 × 
√

T + 5.14 × 10−6 × Mw × 
√

P × ln(T) (23) 

 

A4 = 
0.3091 

tanh(Pc) 
− 

0.4344 
 

3 
c 

 

– 0.002638 × exp(Pc) (24) 

A5 = 4.047 − 5.481 × 10−3 × Mw (25) 

A6 = 2.33 × 10−5 × Tc × tanh(Mw) − 0.0004489 × P3 (26) 

A7 = 4.047 × 10−6 − 0.000305 × w  
A8 = −5.213 × 10−7 × P3 − 0.146 × Pc + 0.5632 × w + 0.04124 × exp  T 

6.1. Performance Evaluation 

 

– 0.2381 × ln(tanh(P)) − 0.339 
(27) 

Table 3 summarizes the statistical parameters (RMSE and R2) of the three proposed models in 

predicting CO2 solubility for training, test, and overall data. The graphical representation of the overall 

RMSE and R2 through bar plots, as shown in Figure 2. This graphical comparison allows an alternative 

visualization for the performance of the different models. A concise view of the figure shows that the 

values of RMSE and R2 were closest to 0 and 1, respectively, pointing out that the models were more 

credible and qualified for the forecast. 

Table 3. Statistical parameters of the proposed models in predicting CO2 solubility. 
 

Training Data  Test Data  Overall 

RMSE R2 RMSE R2 RMSE R2 

MLP-LMA 0.0107 0.9971 0.0150 0.9941 0.0116 0.9965 
MLP-BR 0.0117 0.9966 0.0138 0.9951 0.0121 0.9963 

GEP 0.0192 0.9907 0.0238 0.9854 0.0201 0.9896 

 

Form a deep comparative standing point of view, Table 3 and Figure 2 show that the reliability 

of the developed models took the following order: MLP-LMA > MLP-BR > GEP. The MLP model 

optimized using LMA had the highest R2 coefficients and the lowest RMSE values for both the training 

and overall data, followed by the MLP-BR model. On the other hand, very satisfactory performances 

and high predictions potential of the GEP model were asserted by the values reported in Table 3 for 

training, test, and overall data. 

Cross plots in Figure 3 were used to compare the models’ predictions against the experimental 

data further. In these plots, the predicted values using the three methods were represented versus the 

previously established experimental data for the solubility of CO2 in ILs. The criterion of precision for 

the different models in typical cross plots can be indicated by the compressed gathering of data points 

cloud nearby the 45◦ line, otherwise, all points falling on the unit slope would correspond to a perfect 

model. The accumulation of data cloud nearby the 45◦ line was attributed to the elevated value of R2 

close to the unit and to the low value of RMSE near zero. 

It can be observed in Figure 3, that the MLP-LMA, MLP-BR, and GEP models exhibited distributions 

of predictions near the unit slope line for both training and test datasets, confirming their high accuracy 

in estimating the solubility of CO2 in the considered ionic liquids. 
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Figure 2. Performance comparison on the overall dataset for the proposed models: (a) Root mean 

square error (RMSE), and (b) R2. 
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6.2. Comparison with PR and SRK EoS Results 

The results obtained by the MLP-LMA model were compared with values calculated using 

thermodynamic models based on PR and SRK EoS. 

Tables 4 and 5 provide the CO2 solubility and thermodynamic properties respectively. Furthermore, 

Table 6 summarizes a comparison, where the RMSEs and R2 of the best-proposed model, i.e., MLP-LMA, 

and PR and SRK EoS were mentioned. To perform this comparison, two samples of ILs that had not 

been included in the training phase of the intelligent models were considered. These samples included 

[bmim][Tf2N] and [bmim][PF6] ILs. Further description is given in Tables 4 and 5. All three models 

(MLP-LMA, and the PR and SRK EoS) gave accurate descriptions with R2 above 0.98. For the two ILs, 

the MLP-LMA model had a higher coefficient of determination and lower RMSE compared to the PR 

and SRK EoS, in the following order of reliability: MLP-LMA > SRK > PR in the case of [bmim][PF6], 

and MLP-LMA > PR > SRK in the case of [bmim][Tf2N]. 

Table 4. Ranges of temperature, pressure, and CO2 solubility in [bmim][Tf2N] and [bmim][PF6] ILs. 
 

No. Ionic Liquid T (K) P (MPa) x CO2 References 

1 [bmim][PF6] 298.15 1.33–5.37 0.2054–0.5604 [59] 

2 [bmim][Tf2N] 298.15 0.42−5.91 0.0973−0.7117 [60] 

Table 5. Thermodynamic properties of [bmim][TF2N] and [bmim][PF6] ILs. 
 

 

No. Ionic Liquid 
Mw 

(g/mole) 
Tc (K) Pc (MPa) w References 

 
 

1 [bmim][PF6] 284.18 708.9 1.73 0.7553 [59] 

2 [bmim][Tf2N] 419.36 1265.0 2.76 0.2656 [60] 
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Figure 3. Cross plots of the proposed predictive models. 

Figures 4 and 5 exhibited the comparison performed between PR and SRK EoS and the MLP-LMA 

model, and at the same time, the evolution of CO2 solubility with pressure in the two ILs at a constant 

temperature. As it is clear in the figures, the solubility of CO2 increased with the increase in pressure 

for the two investigated ILs. Henry’s law can explain this phenomenon, which supposes that the gas 
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solubility throughout a liquid is directly a function of the gas pressure above the solution’s surface [28]. 

The increase in pressure forces gas molecules into the solution, thus the number of gas molecules 

dissolved raises. It can also be seen from the figures that the solubility values predicted by the 

MLP-LMA model are in good agreement with the experimental data, whereas those established using 

the EoS differs slightly. 

Table 6. Comparison of R2 and RMSE of EoS and the best proposed model. 
 

PR EoS SRK EoS MLP-LMA Model 
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Figure 4. Comparison of Peng–Robinson (PR) and Soave–Redlich–Kwong equations of state (SRK EoS), 

and MLP-LMA model for prediction of CO2 solubility in [bmim][PF6] at T = 298.15 K. 
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Figure 5. Comparison of PR and SRK EoS, and MLP-LMA model for prediction of CO2 solubility in 

[bmim][Tf2N] at T = 298.15 K. 
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American Journal of Applied Sciences Volume 15, Issue 1, 2025 

 

6.3. Outlier Detection 

A Williams plot of the MLP-LMA model is depicted in Figure 6. It can be seen from the figure that 

the majority of data points are situated in the range of −3 ≤ R ≤ 3 and 0 ≤ H ≤ 0.03, which validated 

and verified the implemented MLP-LMA model statistically, where 13 points are considered suspect. 

In summary, the leverage approach states that the developed model is reliable and can be used with 

high accuracy to predict CO2 solubility in ILs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Williams plot of the MLP-LMA model. 

7. Conclusions 

In the current paper, based on different experimental data gathered from the literature, MLP-LMA, 

GEP, PR, and SRK EoS methods were successfully used to predict carbon dioxide solubility in 

13 various ionic liquids under the (298.15–373.15 K) temperature and (0.01–100.12 MPa) pressure 

range. Multilayer perceptron optimized with two back-propagation algorithms, viz. LMA and BR, 

and a reliable white-box technique, namely GEP, were the applied data-driven methods. The various 

statistical indicators obtained in this study showed that MLP optimized with LMA was the most 

advantageous paradigm, which can be used with high precision to predict the CO2 solubility in ILs 

for natural gas sweetening and purification process, which may be of great interest for experts and 

gas engineers. Furthermore, the established correlation using the GEP-based model was reliable and 

gave good results. Finally, the comparison made between the MLP-LMA model and PR and SRK EoS 

demonstrated the high performance of the proposed model against the cubic EoS. 
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Abbreviations and Symbols 

ANN Artificial neural network 

BR Bayesian Regularization 

CO2 Carbon dioxide 

d Data points number 

DEA Diethanolamine 

EoS Equations of state 

ETs Expression trees 

exp Experimental 

FL Fuzzy logic 

GEP Gene expression programming 

GP Genetic programming 

H Hat matrix 

H2S Hydrogen sulfide 

H* Limit Leverage value 

ILs Ionic liquids 

LM Levenberg–Marquardt 

MEA Monoethanolamine 

MLP Multilayer perceptron 

MSE Mean square error 

Mw Molecular weight (kg/kmole) 

k Dimension 

n Number of samples 

Pc Critical pressure (MPa) 

pred Predicted 

PR Peng–Robinson 

RMSE Root mean square error 

R2 Coefficient of determination 

SRK Soave–Redlich–Kwong 

SVM Support vector machine 

t Gene’s tail 

Tc Critical temperature (K) 

TEA Triethanolamine 

w Acentric factor 

x Mole fraction of CO2 

X (k d) matrix 

Xt X transpose matrix 
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