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Abstract: In this manuscript, a resonator layer is presented for the purpose of reducing the mutual 

coupling effect between each antenna element of a cross dipole antenna. In design processes, 

an artificial neural network approach was used for various resonator designs. In the operating 

frequency band of 2.2–2.7 GHz, 48 different 6 × 6 resonator layers were created and integrated 

into the cross dipole antenna to reduce transmission and improve isolation between each antenna 

elements. Moreover, when training an artificial neural network in the Matlab program, 48 different 

resonator layers were used with the return losses and transmission values of cross dipole antenna 

elements. After training process, eight unknown resonator designs were tested and accurate results 

were obtained. Finally, one of the resonator planes, which was obtained from the artificial neural 

network, was fabricated and experimentally tested, then an accurate result was obtained. This study 

provides a good solution, especially for improving isolation in multiport antenna systems, using an 

artificial neural network approach. 
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1. Introduction 

Mutual coupling effect is a serious problem in Multiple Input-Multiple Output (MIMO) antennas, 

and this problem occurs if the antenna elements are located very closely to each other. For example, 

if two planar antennas are located in a close range, one of these antennas radiates relatively as a function 

of the other antennas and vice versa [1]. In addition, it is expected for the antenna performances to 

be affected due to the close placement of the antennas. The physical spaces that host antennas (radio 

enclosures, antenna towers, etc.) are mostly limited, meaning it is inevitable to place multiple antennas 

and/or antenna elements very close to each other. This condition causes mutual coupling problems, 

that is, isolation problems. In recent years, various structures were designed and integrated with 

various antennas to overcome this problem and improve the efficiency of the antenna systems [2–6]. 

For instance, a wide band neutralization line [2] and meander line resonator [3] were presented in the 

literature to enhance mutual coupling between each antenna element of MIMO antennas. Moreover, 

metamaterials [4,5] and metasurfaces [6], which are other artificial structures, were also used to 

minimize the mutual coupling effect in MIMO antenna applications. 
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In addition, Electromagnetic Band Gap (EBG) structures are also used in mutual coupling reduction 

applications [7,8]. Li et al. proposed a two layered EBG structure to reduce mutual coupling effects 

between ultra-wide band monopole antennas in a wireless communication band [7]. In addition, one 

dimensional EBG and split ring resonator structures were used to decrease the coupling problem of 

2.45 GHz planar monopole antennas [8]. Similarly, Ibrahim et al. proposed a MIMO patch antenna 

configuration for a 5.8 GHz band in a ground plane to overcome this coupling problem between 

antenna elements [9]. In another study, Bernety and Yakovlev succeeded to reduce mutual coupling 

between nearest strip dipole antennas with the help of elliptical metasurface layers [10]. Moreover, 

Cheng et al. designed an array patch antenna configuration with the integration of an polarization 

conversion isolator to improve the antenna system parameters distorted by the coupling effect [11]. 

Additionally, there are many approaches and studies in the related literature focusing on improving 

the isolation by reducing the coupling effects between closely placed antenna elements in MIMO 

antennas [12–15]. In one of the recent studies, a metamaterial absorber structure is designed and 

integrated to a four-element array antenna for 1.27 GHz band by Zhang et al. [14]. With these developed 

techniques, artificial neural networks provide accurate solutions and are used in many areas [16–20]. 

Srivastava et al. used artificial neural network for analyzing and estimating microstrip circular patch 

antenna parameters in S frequency band regime [16]. In addition, Rajaraman et al. developed a method 

to compute the resonance frequency of metamaterial based patch antennas with the help of a artificial 

neural network [17]. In the same way, Nayak and Kumar used a artificial neural network approach to 

design a microstrip patch antenna with possible optimization values [18]. In another study, a novel 

artificial neural network model was developed to estimate antenna performance parameters in X band 

antenna applications [19]. As shown in a literature review, various structures were designed and 

developed for reducing the mutual coupling of cross antennas, while neural network approaches were 

used to enhance and estimate antenna performance parameters. 

In this study, a mutual coupling effect between each antenna element of cross dipole antenna 

is reduced and the isolation between them is improved by using an artificial neural network model. 

Firstly, an artificial neural network approach and working principle was given and the design phase 

of cross dipole antenna was presented for the 2.45 GHz frequency band. To minimize transmission 

values between antenna elements as well as corresponding mutual coupling, a resonator layer was 

designed and integrated to the cross dipole antenna. Afterwards, 48 different types of resonators were 

tested with a cross dipole antenna, the obtained results were transferred to the neural network, and the 

network was then trained. Moreover, a network model was tested and one of the test resonators was 

fabricated and experimentally investigated. 

2. Neural Network Approach 

Before mentioning artificial neural networks (ANN), biological neurons should be discussed. 

Neurons in our brains are connected to each other through synapses, while signals are transmitted 

between neurons through each neuron cell bonds. The signals are carried to the neurons to which the 

synapses are bound, and when the sum of these signals exceeds a certain level or activation level, the 

neuron outputs and transmits to the other neurons with synapses. It is known that there are 100 billion 

of neurons in our brain. Each of these neurons makes around a thousand connections with each other. 

These complex connections enable us to achieve many functions such as thinking, linking events, and 

recording memories. 

During the last half century, researchers have been to put forward a mathematical model inspired 

by the human brain and its features. This model, which is called an artificial neural network, is built 

on multiple input lines, a connected neuron, and a single output system connected to the same neuron. 

In the illustration given in Figure 1, each input line has a value called a weight. This weight value 

is multiplied by the input value and the value of that line is found. All inputs are multiplied by 

the weights in the line they are located on and by the neuron to which they are connected, and the 
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threshold value is added. The total value is found and passed through the activation function. Finally, 

the result is the output value of the neuron. 

 

Figure 1. Illustration of the neural network approach. 

The simple formulas of this structure are given below; in these formulas, i input and w weight are 

multiplied with each other, and the obtained results for each input and weight are added together to 

obtain the value of s output. For the Jth neuron, 

sumj = 
, 

inputi ∗ weightij (1) 

outputj = fsigmoid

 
sumj + thresholdj

 
. (2) 

With this sum value (1), the threshold value is added and the output of the neuron is obtained. 

When this value is passed through the activation function, then the value of that neuron will transmit 

to other neurons. In this study, the sigmoid function was selected as the activation function. 

When a young child learns to read and write, he or she generally must be educated in a class. 

The child must repeat the letter A several times to learn how to write it. This repetition occurs under 

the supervision of the teacher and feedback is given to the student about his/her mistakes. The same 

process could be applied to artificial neural networks. The data to be used in artificial neural networks 

are compared with the response of the network. As a result of this comparison, the obtained value is 

the error value. This error value should be close to zero. After the calculation of each error value, the 

weight values should be updated. This process continues until the error approaches zero. Neurons are 

traced backwards and their weights are updated according to the error rates. In Figure 1, the inputs are 

multiplied by the weights and transferred by neurons. The obtained result is compared to the target 

values and weights are adjusted again. With zero resets, learning is achieved and the training of the 

network is completed. 

The formulas used to update the weights with the back propagation algorithm of the network are 

given below: 

weightij = weightJ + Learning rate ∗ errorj ∗ inputi (3) 

errorj = outputj ∗
 
1 − outputj

 
∗

 
targetj − outputj

 
. (4) 

The information taught to artificial neural networks is stored in the weight values of the connections 

of the network. Since the weight values are spread over the entire network, the memory of the network 

is also called distributed memory. 

3. Cross-Dipole Antenna Design 

In this study, nested dipole antennas were designed as a cross-dipole antenna. In design processes, 

Finite Integration Technique (FIT) based microwave simulation software is used. Designed cross-dipole 



 

American Journal of Applied Sciences Volume 15, Issue 1, 2025 

 

antenna is illustrated with dimensions in Figure 2a. This type of antenna is designed for 2.40 GHz 

communication frequencies and each pole has a 30.75 mm length. Moreover, FR-4 dielectric material is 

used in dielectric layers which have a permittivity of 4.3 and copper is used in antenna resonators 

which have a conductivity of 5.8 × 108 S/m. Designed cross-dipole antenna has a good return loss of 

−17 dB at 2.45 GHz, as illustrated in Figure 2b. Moreover, there is an undesired transmission between 

each antenna as shown, and the transmission value is nearly −15 dB at 2.45 GHz. The purpose of this 

study was to reduce this undesired transmission characteristic and improve the isolation between 

two antenna elements forming the cross dipoles. For this reason, a resonator plane was designed and 

integrated to the cross dipole antenna, as presented in the next section. 

 

Figure 2. (a) Cross-dipole antenna design with dimension parameters and (b) Simulated results for 

S11, S21. 

4. Reduction of Mutual Coupling by a Neural Network Approach 

As mentioned before, the aim of this study was to reduce mutual coupling between each antenna 

element of a cross dipole antenna. The mutual coupling effect corresponds to the transmission value 

in antenna engineering and a resonator plane was designed in our study to reduce the transmission 

value (S21) in the designed cross dipole antenna. As shown in Figure 3, the designed resonator plane 

has a square shape and 50 mm side lengths, and it also consists of unit cells made of copper. Each unit 

cell has dimensions of 5 mm × 5 mm and resonator plane consists of 6 × 6 unit cells, as illustrated in 

Figure 3. According to the number of unit cells, there are 236 different artificial surface possibilities. 

It is hard to reduce the mutual coupling effect in FIT based microwave simulator because doing so 

involves the trial and error method. However, an artificial neural network model gives more accurate 

results with a trained data set. Thus, we used an artificial neural network model. 

In line of the purpose of our study, an arbitrary resonator plane was designed on a printed circuit 

board and integrated into the cross dipole antenna to reduce the mutual coupling effect. Each unit cell is 

represented by a binary bit “1” or “0” state. Therefore, the “1” state corresponded to a copper cell while 

“0” corresponded to an empty state. Although there were 36 bits, the designed surface was represented 

by 18 bits to set up a symmetric design procedure, as illustrated in Figure 4. Each symmetric column is 

named as X, Y, or Z for identification of the relevant cell number. A total of 48 various resonator planes 

were designed and tested with cross dipole antenna. The obtained return losses and transmission 

values are listed in Table 1. 
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Figure 3. Cross-dipole antenna and resonator plane in a binary system. 
 

Figure 4. (a) Resonator plane and artificial neural network working principle and (b) neuron 

training results. 

These return loss and transmission values were exported to the Matlab environment and the 

artificial neural network toolbox was used for training processes. One of the relevant designed surface 

and working processes for artificial neurons is given in Figure 4a. A total of 48 various results were 

trained by artificial neurons and neural network tools in the Matlab environment, and mean square 

errors (MSE) were calculated and plotted as shown in Figure 4. As shown in Figure 4b, the artificial 

neural network was fully trained at the sixth iteration. 

Afterwards, the trained neural network was tested by eight different unknown resonator planes, 

as listed in Table 2. According to the obtained isolation (S21) values, the trained neural network was 

well matched with the results of the FIT based microwave simulator, as the error rate was less than 

2%. For example, the isolation value was obtained as −15.5183 dB for the resonator plane (X, Y, Z) 

represented by (00000, 000000, 111110) and the isolation value was −15.5 dB in the FIT based simulator. 

As a consequence, the artificial neural network was well trained by different resonator planes and the 

obtained results are plotted in Figure 5 with eight unknown test planes. In addition, according to 

Figure 4, there was a good match in isolation values with a mean error rate of less than 2%, which is 

listed in Table 2. 
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Table 1. Return loss and transmission values of 48 various resonator planes. 
 

Variables Output1  Output2 
Outpu3 

 

X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6 Z1 Z2 Z3 Z4 Z5 Z6 S11 S22 S12 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −20.64 −14.82 −14.98 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 −30.78 −10.59 −15.89 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 −27.15 −10.56 −15.90 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 −13.73 −9.77 −15.43 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 −7.84 −9.68 −15.51 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 −4.64 −9.67 −15.86 

0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 −3.26 −9.12 −16.11 

0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 −3.78 −8.38 −16.19 

0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 −4.78 −6.74 −16.51 

0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 −5.58 −6.09 −16.61 

0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 −5.62 −5.96 −16.64 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 −4.96 −5.86 −16.80 

1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 −4.01 −5.23 −16.81 

1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 −4.35 −4.77 −16.81 

1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 −4.94 −3.97 −16.88 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 −5.35 −3.60 −16.85 

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 −5.33 −3.43 −16.76 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −4.90 −3.24 −16.70 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 −4.77 −3.22 −15.94 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 −4.66 −3.30 −15.78 

1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 −3.87 −3.40 −15.49 

1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 −3.14 −3.75 −15.21 

1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 −1.24 −4.61 −15.33 

1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 −1.24 −5.00 −15.77 

1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 −19.42 −5.94 −16.23 

1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 −20.90 −6.34 −16.28 

1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 −20.00 −6.43 −16.60 

1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 −19.83 −6.53 −16.67 

1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 −20.49 −4.62 −16.90 

1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 −21.16 −4.88 −17.02 

1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 −21.57 −4.90 −17.06 

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 −21.83 −4.90 −17.09 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −21.27 −13.09 −16.27 

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −21.28 −13.11 −16.13 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 −11 −12.82 −16.34 

1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 −5.35 −16.78 −16.50 

1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 −1.9 −1.95 −13.31 

1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 −5.47 −12.17 −16.46 

1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 −19.75 −12.55 −16.41 

1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 −24.53 −9.74 −15.79 

1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 −1.57 −1.22 −10.45 

0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 −25.10 −9.73 −15.75 

0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 −20.95 −9.79 −15.71 

0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 −7.63 −9.73 −16.26 

0 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 −7.76 −7.11 −15.20 

0 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 −8.27 −1.64 −14.89 

0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 −27.53 −9.88 −15.59 

1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 −27.01 −9.87 −15.63 

 

Table 2. Comparison of transmission values of eight unknown resonator planes. 
 

 

X1  X2  X3  X4  X5  X6  Y1  Y2  Y3  Y4  Y5  Y6  Z1  Z2  Z3  Z4  Z5  Z6 
Artificial 
Neural 

Network 

FIT 
Based 

Simulator 

% 

Error 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −15.2782 −15 1.85 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 −15.8851 −15.9 0.09 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 −15.9021 −15.9 0.01 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 −15.4356 −15.4 0.23 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 −15.5183 −15.5 0.11 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 −15.7793 −15.8 0.13 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 −16.6678 −16.9 1.37 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 −16.6741 −16.4 1.67 
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Figure 5. Comparison of an artificial neural network and Finite Integration Technique (FIT) based 

microwave simulator. 

Furthermore, random resonator planes were created and imported into the artificial neural 

network to obtain an optimum design with a reduced mutual coupling effect (S21). The minimum 

mutual coupling effect obtained by resonator plane is illustrated in Figure 6 and the cross dipole 

antenna was investigated with and without a resonator plane, which is shown in Figure 7. Moreover, 

the cross dipole antenna was tested in a microwave simulator with and without a resonator plane and 

transmission values between each antenna element was obtained as shown in Figure 8. According to 

the transmission graph, the plane resonator decreases the mutual coupling effect by nearly 2 dBi in the 

2.2–2.7 GHz band. 
 

Figure 6. A resonator plane designed by a neural network. 
 

Figure 7. Cross dipole antenna (a) with a resonator plane and (b) without a resonator plane. 
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Figure 8. The mutual coupling effect between cross dipole antennas. 

5. Experimental Investigation and Results 

The designed cross dipole antenna and plane resonator was fabricated by a LPKF-E33 circuit 

printer, as shown in Figure 9. The figure shows only a cross dipole antenna with a connected SMA port 

and plane resonator integrated cross dipole antenna with an SMA port, respectively. Experimental 

measurements were carried out by an Agilent PNA-L vector network analyzer as given in Figure 10a, 

and measured transmission values are plotted in Figure 10b. According to the measured transmission 

values, the resonator plane reduced transmission values between each antenna of cross dipole antenna, 

which led to a mutual coupling effect being decreased when using this resonator layer. At the frequency 

of 2.4 GHz, a cross dipole antenna has mutual coupling (S21) of −19.7 dB but it is −25.3 dB with the 

use of a plane resonator layer. As a result of this study, a trained artificial neural network provides an 

accurate solution for mutual coupling effect between each element of cross dipole antenna with an 

error rate of less than 2%, as given in Table 2. 

 

Figure 9. (a) Fabricated cross dipole antenna and (b) resonator layer integrated cross dipole antenna. 
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Figure 10. (a) Experimental measurement and (b) transmission graph. 

6. Conclusions 

This research paper presents a resonator layer combined with a cross dipole antenna for wireless 

communication bands, especially for the 2.2–2.7 GHz band. First of all, a cross dipole antenna was 

designed in an FIT based microwave simulator. Due to the close distances between each antenna 

elements constituting the cross dipole antenna, there were −15.6 dB transmissions between each 

antenna element at 2.4 GHz. Various type resonator layers were then designed and imported into 

the Matlab environment for neural network processes. Additionally, an artificial neural network was 

trained by various types of resonators to create a minimum mutual coupling effect between each 

antenna element of cross dipole antenna. The obtained minimum mutual coupling at 2.4 GHz was 

−17 dB with a resonator layer. Finally, a resonator layer for a minimum mutual coupling effect and 

thus for better isolation between antenna elements was fabricated in a microwave laboratory and 

tested experimentally. The obtained accurate results showed that the designed structure improves 

the isolation and reduces the transmission values significantly, which is a challenging problem in 

the antenna industry. In conclusion, it can be easily said that an artificial neural network provides a 

solution for antenna parameter enhancement applications with different frequency bands. 
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