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Abstract: Beat detection systems are widely used in the music information retrieval (MIR) research 

field for the computation of tempo and beat time positions in audio signals. One of the most important 

parts of these systems is usually onset detection. There is an understandable tendency to employ 

the most accurate onset detector. However, there are options to increase the global tempo (GT) 

accuracy and also the detection accuracy of beat positions at the expense of less accurate onset 

detection. The aim of this study is to introduce an enhancement of a conventional beat detector. 

The enhancement is based on the Teager–Kaiser energy operator (TKEO), which pre-processes the 

input audio signal before the spectral flux calculation. The proposed approach is first evaluated in 

terms of the ability to estimate the GT and beat positions accuracy of given audio tracks compared 

to the same conventional system without the proposed enhancement. The accuracy of the GT and 

average beat differences (ABD) estimation is tested on the manually labelled reference database. 

Finally, this system is used for analysis of a string quartet music database. Results suggest that 

the presence of the TKEO lowers onset detection accuracy but also increases the GT and ABD 

estimation. The average deviation from the reference GT in the reference database is 9.99 BPM 

(11.28%), which improves the conventional methodology, where the average deviation is 18.19 BPM 

(17.74%). This study has a pilot character and provides some suggestions for improving the beat 

tracking system for music analysis. 
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1. Introduction 

Onset time in audio signal analysis represents the time position of a relevant sound event: usually 

when a music tone is created. Onset detection functions are algorithms that capture onsets (onset 

time positions), and thus ideally all tones in audio recordings. They can create a representation or 

an evolution of onset structure in given time of particular audio recording. There are also offsets of 

tones (indicating the end time position of a tone in a signal), e.g., see [1,2], but beat tracking systems 

do not need such information to work properly. The conventional beat tracking system is usually 

based on the calculation of repetitiveness of the dominant components in an onset function (onset 

curve) and its output represents a temporal framework, i.e., time instances, where a person would 

tap when listening to the corresponding piece of music. That is why it is important to have a robust 
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and computationally effective onset detector. Calculation of the beat positions and global tempo 

(GT) is important for musicologists and the complex music analysis. With such automated systems, 

tempo and agogic changes can be measured much faster than only with manual approach alone. Thus, 

musicologists would have to spend less time correcting calculated beat positions. Therefore, we set 

a new parameter—the average deviation of reference beat positions to the calculated beat positions as 

the average beat deviation (ABD). 

Most of the onset detectors are based on energy changes in spectra: the calculation of spectral 

flux. For bowed string instruments there is a method called SuperFlux that can suppress vibrato in 

an expressive performance and reduce the amount of false-positive detections [3]. Some methods 

enhance the spectral flux onset detection using logarithmic spectral compression and then compute 

the cyclic tempogram for a tempo analysis [4]. There is also a method that calculates tempograms 

using Predominant Local Pulse [5]. Besides, the onset detection and beat detection could be performed 

in several toolboxes and libraries such as Tempogram Toolbox [6], LibROSA [7], MIR Toolbox [8], 

etc. [9]. The state-of-art onset detectors are usually based on deep neural networks [10,11] using 

spectral components and parameters as their inputs. Beat detection systems contribute from the solid 

onset detectors, where periodicity is identified [6,8,12–14]. As in other MIR fields, neural networks are 

also used. 

While onset detection in percussive music is considered to be highly accurate (already at MIREX 

2012 conference [15], algorithms achieved F-measure values greater than 0.95 for percussive sounds), 

detection of soft onsets produced by bowed string or woodwind instruments is still challenging. 

Although a lot of improvements in onset detection have been made, no system is truly universal for all 

musical instruments and all types of music. 

This work aims to enhance the conventional beat tracking system and to improve the tempo 

analysis methodology published in [16,17] using the more sophisticated approach of tempo structure 

creation based on the automated beat tracking system with the Teager–Kaiser energy operator (TKEO) 

included. This nonlinear energy operator is used, e.g., for the improvement of onset detection in 

EMG signals (electromyography) [18], to decompose audio into amplitude and frequency modulation 

components [19], for the detection of Voice Onset Time [20], or the highly efficient technique for LOS 

estimation in WCDMA mobile positioning [21]. So far there is no extensive study on the use of TKEO 

for the analysis of musical instruments. 

Since we will focus on the detection of onsets of melody instruments with low-energy attacks, 

we will concentrate on the onset and beat detection method based on spectral changes. We have not 

chosen probabilistic models, because they are usually susceptible to noisy recordings, which can be 

a problem in the case of old recordings. 

The rest of the paper is organised as follows: Section 2 describes the onset detection function, 

the Teager–Kaiser energy operator, the proposed enhancement of the conventional beat tracking system 

and the beat detection method. It shows, how is the TKEO changing the spectra and therefore the 

output onset detection. Then, it introduces the reference and the string quartet database used for the 

GT and ABD estimation. Furthermore, a possible application is shown and the system evaluation is 

defined. Results are reported in Section 3 and discussed in Section 4. Finally, conclusions are given 

in Section 5. 

2. Dataset and Methods 

2.1. Onset Detection 

Usually, onset detection algorithms use some pre-processing steps to reduce redundant 

information and to improve detection accuracy.  In this study, we propose a new method of 
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pre-processing based on the TKEO. The TKEO (Ψ{s(t)}) is a nonlinear energy operator that can 

be calculated using the following formula: 
 

 

Ψ{s(t)} = 
ds(t)  2 

dt 
— s(t) · 

d2s(t)
, (1) 

dt2 

i.e., we compute the square of the first derivative (which denotes the square of the rate of signal change) 

and then subtract the signal multiplied by the second derivative (which determines the acceleration at 

that point). We speed up the temporal changes of the signal module by removing the slow changes 

because we consider the rate of change. It is known that the faster the time changes, the higher the 

frequency components appear in the spectrum. By taking the first derivative into account, we increase 

the magnitude of higher frequencies of the spectrum [22]. 

In our discrete approach, we firstly downsample the input signal x[n] to 22,050 Hz. Next, we apply 
the TKEO, i.e., we calculate the corresponding discrete non-causal form: 

Ψ[x[n]] = x2[n] − x[n − 1] · x[n + 1], (2) 

which creates an energy profile of the given audio sample. In comparison to the conventional squared 

energy operator, the TKEO takes into account also signal’s frequency [23] and it can have negative 

values, e.g., see Figure 1. Differences in spectra for the same audio track (clarinet recording) are shown 

in Figure 2. It is interesting how the dominant spectral components have changed—the clarinet has 

naturally strong odd harmonics, but the TKEO has changed their magnitude. 

 

 
        

          

          

          
 

Figure 1. Original signal and the same signal after application of the TKEO pre-processing. 
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Figure 2. Spectrograms of the same clarinet recording—the second one is using a TKEO step. 

In the following step, we calculate the onset envelope using the perceptual model. We use 

Short-Time Fourier Transform (STFT) with Hann window (hop-factor: 512 samples) and then the 

conversion to the perceptual model with log-power mel-frequency representation: 120 mel bands, max 

frequency at 10 kHz and min frequency at 27.5 Hz. We get the matrix |X[m, k]|, where m denotes the 

index of the frame and k the frequency bin or index of the mel band. These settings were inspired by 

SuperFlux calculation [3]. 

In the next step, we calculated the spectral flux. The basic version of spectral flux is defined as the 

l1-norm of consecutive frames [24]: 

SF 
 1 K−1 

[m] = 
K ∑ H(|X[m + 1, k]| − |X[m, k]|), (3) 

k=0 

for m = 0, 1, 2, . . . , M − 2, where H[x] = (x + |x|)/2 is the half-wave rectifier, M is the number 

of frames, and K is half of STFT frequency bins, or number of mel bands. A half-wave rectifier is 

used to set negative values to zero and positive differences are summed across all frequency bands. 

Spectral flux gives us information, how energy in spectra changes in time. Finally, a peak-picking 

function is applied (default LibROSA settings) to identify time positions of onsets and therefore new 

tones in the audio signal. 

An example of this system based on the mel-frequency representation, but without the use of 

TKEO, is shown in Figure 3. It represents a solo clarinet part. The onset function detected many false 

peaks and marked positions, where tones were not played. For comparison, Figure 4 shows the same 

signal, but in this case, pre-processed by the TKEO. The peak-picking function now marked all real 

onsets with better accuracy and without any false positive detection. The colorbar in dB (Figure 5) is 

presented separately because of the proper alignment of a spectrogram and onset function but is the 

same for all spectrograms (produced by matplotlib package) in this paper. 
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Figure 3. Spectrogram and onset detection function for a solo clarinet without the TKEO. 

 

 

 

 
 
 

Figure 4. Spectrogram and onset detection function for a solo clarinet with the TKEO. 
 

Figure 5. Colorbar. 
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As we can see on the second spectrogram (Figure 4), the energy in spectra changed, frequencies 

do not correspond properly to the original signal and new tones are sharpened and much more clear. 

We give this example for a good reason. Recording of a solo clarinet was the only audio track, in which 

the accuracy of the onset detection function was improved. Adding TKEO into this conventional 

detection method lowered the general detection accuracy. It decreased the number of detected false 

positives but also decreased the true positives. The cause of this phenomenon is explained in the 

following Section 2.2. We suggest that the general effect of the TKEO on onset detection function for 

woodwind instruments should be tested in more detail. 

2.2. TKEO Influence 

We applied the proposed method with the TKEO included on more recordings and observed, 

that in cases, where the tones are fast (e.g., violin playing thirty-second notes), or the energy difference 

is very low, this method does not detect every onset properly. Adding the TKEO increased the detection 

tolerance of fast changes in the signal. This means that the operator added additional “latency” to the 

signal values. It also decreased the ability of this system to capture low-energy spectral components. 

In general, fewer onsets were detected—only strong and more rhythmically important onsets remained. 

This is the advantage of the TKEO in the system. It suppresses less dominant spectral components and 

very fast tones even though onset detectors are usually set to do the opposite. 

Figures 6 and 7 show another analysed track—a violin solo in a very fast tempo. There is a clear 

difference in spectrograms for the described detector and the same detection with the TKEO included. 

Most of the tones are quite visible in the spectrogram of the first figure. However, the system with the 

TKEO has its changes in the spectrum vaguer and blurry which means that onset function detected 

a lower number of onsets (especially between the 1st and the 4th second of this track). In this case, 

the conventional system detected more onsets correctly but that still does not indicate that estimation 

of GT would be also more accurate. 

 

 

 

 
 

 
Figure 6. Spectrogram and onset detection function for a solo violin without TKEO. 
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Figure 7. Spectrogram and onset detection function for a solo violin using TKEO. 

2.3. Tempo Representation 

To create a tempo structure of given recordings, we need a representation of tempo—how the 

density of onsets, or more precisely repetitiveness of significant onsets, is distributed. This can be 

done by several techniques, in this study we focused on the method of dynamic beat tracking system 

proposed in [12]. This system estimates beat positions in an onset envelope and uses them to pick 

the right peaks within a given interval (default tempo). The default tempo is set up before the 

calculation (or it is calculated automatically based on autocorrelation function with respect to the 

standard 120 BPM) and therefore it has to be estimated by listening to the particular audio track or 

estimated from the sheet music to work as we want. The calculated peak positions can deviate from 

the default tempo in adjustable boundaries (depends on settings, e.g., Ellis reports approximately 

10% [12]). The parameter “tightness”, which corresponds to the detection tolerance (from the default 

tempo), was set to the number 50 in all cases. At first, this looks like an inappropriate method for 

the varying tempo of string quartet music (second database), but with good parameterization and 

segmentation of particular motifs, it fits our need. 

Beat detectors are based on a calculation of beats in an audio signal and therefore the metric 

structure from an elementary point of view. Usually, there is not enough information to consider 

dividing beats into bars without manual correction, but with proper segmentation, midi reference 

and dynamic time warping (DTW) techniques, this is possible [25]. However, one does not need such 

a method to calculate the GT of a given track. In this case, we only focused on the GT and ABD. 

Figure 8 shows how this system picks onset candidates from the onset curve and creates the beat 

positions by using periodicity information. 

Figure 9 shows the estimated time positions of beats at the beginning of a string quartet segment. 

As we can see, the system is using periodicity information to calculate beat positions even at places 

where no onsets are detected—in this specific part, second violin and viola are playing very quietly 

(and no onset is detected) and then a violin solo begins. Between the 6th and the 10th second of 
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this track, there are strong onsets in the calculated onset curve. Their periodicity information is then 

used to fill the gap in the silent part of this recording, which is one of the advantages of the dynamic 

programming search system. 

The disadvantage of such a beat tracking system is the adjustable default tempo—the algorithm 

searches for beat positions within a given interval, but there is no guarantee that true beat positions 

exist within specified limits (also concerning the tolerance parameter). The reference global tempo 

can be misleading if the recording is rhythmically unstable or the tempo changes significantly over 

time. A similar problem exists in the metric pulse. If the system detected 100 BPM as the GT and 

the reference is 50 BPM, it does not mean that the system is completely wrong. That is why we also 

calculated the ABD. 

 

 

 

             

Figure 8. Comparison of the onset and beat positions. 

 

 

 
Figure 9. Estimated beat positions by the dynamic programming system. 
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2.4. Dataset 

First of all, we tested whether the TKEO improves the estimation of the GT in general. The GT is 

the median of differences between the time positions of beats throughout the whole analysed track. 

For this purpose, we used the SMC_MIREX database [26], which consists of different recordings, 

from classical pieces to guitar solos. The recordings are sampled by 44.1 kHz. Their annotations 

contain manually corrected beat time positions, which will be used as a reference. 

Music by string quartets is very specific because the tempo can be more or less stable but the 

musical ornaments, intended gaps, fermatas, or other expressive musical attributes can be present. 

Every musician has her/his own style of agogic performance. If we define meaningful musical parts 

by choosing important musical motifs, we can create segments that could be processed separately. 

The second dataset consists of 33 different interpretations of String Quartet No. 1 e minor “From 

My Life”, composed by the Czech composer Bedrˇich Smetana. We also included two interpretations 

played by orchestra. We divided the first movement into six segments of musical motifs in the view 

of the musical meaning. The first movement consists of an introduction (Beg), exposition (A), coda 

(B), development (C), recapitulation (D) and the last coda (E). For every segment, we calculated the 

estimated average tempo (EAT), but without any expressive elements and information about beat 

positions, using a physical length of the tracks and information of rhythmic patterns in sheet music. 

The EAT will be used as a reference tempo for setting up the default tempo parameter in the beat 

tracking system. The first page of the sheet music is provided as an example in Appendix A. 

2.5. Application 

Beat tracking systems are used in the music analysis software for the complex tempo, timbre, 

dynamic or other music analysis. Example of such freeware software is Sonic Visualiser [27]. Figure 10 

shows an example of tempo analysis of the string quartet music from the second tested database. 

The first pane is the visualisation of the audio wave, the second one is the spectrogram and the last 

one is a layer of manually corrected beat positions. Beat positions were calculated automatically 

by the beat tracking system called BeatRoot [28] (Vamp plugin) and then corrected by trained ears. 

The green line shows how tempo evolves in time—if the audio track is locally slowing down or the 

tempo increases. The method which is proposed in this paper has not been developed as a Vamp 

plugin for Sonic Visualiser. 

 

Figure 10. Possible application of the beat tracking system. 
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Musicologists can then draw conclusions from the measurement results. An automated beat 

tracking system is able to reduce the time of analysis significantly. For example, if we measure the 

EAT of the first motif of the second database for each recording, we get interesting results. One of the 

general assumptions is that presently we usually play the same piece of classical music faster than 

we did before. Figure 11 shows that this assumption may not be correct. There is a trend (see the 

slope of the linear regression line based on the sum of squares)—older recordings are on average at 

a faster pace. We do not have enough audio recordings to declare it as a fact, but the tendency is there. 

However, when we plot the EAT of the entire first movement (Figure 12), the tempo decrease is not so 

evident. Each black dot represents one interpretation and the blue line is a trend line. The sample from 

the year 1928 was an outlier and therefore we did not consider it in the regression analysis. 
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Figure 11. Results of the EAT calculation for the first motif of the string quartet database. 
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Figure 12. Results of the EAT calculation for the entire first movement of the string quartet database. 
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2.6. System Evaluation 

During the analysis, we first used the reference dataset to determine the accuracy of the GT and 

ABD estimation. We computed the GT of each track by the proposed beat tracking method using both 

the proposed onset detection function (DS (default system)), and the same onset detection function 

with the TKEO (TS-system with the TKEO). Then we compared the reference values (annotation of 

the dataset) of each tested track with values estimated by the DS and the TS. The reference tempo 

was obtained as the number 60 (BPM definition) divided by the median of time differences between 

consecutive beat time positions. Then we calculated the median (Me) and the mean value (x¯) of 

time differences of consecutive beats in all recordings and also in which the average was less than 

1 s. This represents the ABD of tracks that were close to the reference tempo (some recordings 

achieved more than ~20 BPM difference in the GT when tested; they were excluded for the extended 

ABD testing). 

Next, we analysed the string quartet database. First, all 33 recordings were divided into 

six segments with a relatively steady tempo and then all motifs were tested by the TS and the DS 

to estimate the GT. We computed the reference EAT of all segments of each interpretation (Table 1) 

by calculating the number of quarter notes (Table 2) and dividing them by the time length of each 

recording. The complete table is in Table A1. Finally, the EAT and the computed GT were compared. 

Systems were implemented using Python language (especially NumPy and LibROSA packages). 

 
Table 1. The EAT of all motifs of the second database. 

 

Track Beg A B C D E 

CD01 80.61 69.37 34.41 88.56 55.60 74.50 

CD02 77.80 69.03 44.14 81.84 59.52 72.43 

CD03 77.93 73.19 41.60 87.09 62.36 79.14 

· · · · · · · 

· · · · · · · 

· · · · · · · 

CD33 76.92 63.24 42.05 74.62 56.26 68.31 

All values are in BPM—Beats Per Minute. 

 

Table 2. Calculation of quarter notes in all motifs. 
 

Motif Beginning A B C D E 
 

Bars 1–70 71–110 111–118 119–164 165–225 226–262 
Quarter notes 280 160 32 184 244 148 

 

 
3. Results 

Table 3 presents results of the GT detection based on the first database for the first 30 analyzed 

tracks. The complete table is in Table A2. Average deviation from the reference tempo was 9.99 BPM 

(11.28%) in the case of TS and 18.19 BPM (17.74%) in the case of DS. The least accurate estimation was 

done on the recordings of a solo acoustic guitar. We also applied the t-Test (Paired Two Sample for 

Means) for each system (compared to the reference). P-value for the TS is 0.038 and 0.024 for the DS 

(α = 0.05). Next, Table 4 presents general results of the GT testing: median, mean, standard deviation, 

relative standard deviation and variance for each tested system and the deviations from the reference 

tempo. The mean value of the reference GT was 76.78 BPM, the average computed GT 83.75 BPM for 

the TS and 88.97 BPM for the DS. 

Table 5 shows the mean value and the median of the ABD testing for all analyzed tracks. 

The average difference between consecutive beat time positions of the reference and the TS was 

2.30 s and 2.84 s for the DS. Table 6 shows the average of the arithmetic mean and the median of time 
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difference values of the recordings in which the ABD were less than 1 s. This means 11 recordings for 

the TS (37% of the tested database) and 9 recordings for the DS (30%). The TS detected the right metric 

pulse in more recordings than the DS. Average deviations from the reference beat positions were 0.39 s 

and 0.29 s for the TS and 0.95 s and 0.36 s for the DS respectively. 

Table 2 presents the length of the first movement of each motif of the second database and the 

corresponding number of quartet notes. Then, the EAT was calculated. Table 1 contains results based 

on the EAT of all motifs of our second database—33 different interpretations of String Quartet No. 1 

e minor “From My Life”. Finally, Table 7 shows the difference between the estimated GT and the EAT 

for both proposed systems. The complete table is in Table A3. The average deviation for the TS is 

6.42 BPM and 6.59 BPM for the DS. Due to the nature of the results of the second dataset, no further 

statistical processing of the values was used. 

 
Table 3. Reference GT and computed GT of the reference database. 

 

Track No. 
Reference 

(BPM) 
TS 

(BPM) 
DS 

(BPM) 
TS 

Dev. (BPM) 
DS 

Dev. (BPM) 

1 48.15 47.85 47.85 0.30 0.30 

2 66.99 73.83 73.83 6.84 6.84 

3 68.00 95.70 95.70 27.70 27.70 

· · · · · · 

· · · · · · 

· · · · · · 

30 63.36 63.02 63.02 0.34 0.34 

Average 76.78 83.75 88.97 9.99 18.19 

P-value 0.038 0.024 

TS—System with the TKEO; DS—Default system without the TKEO; Dev.—deviation from the reference 
global tempo; BPM—Beats Per Minute; P—p-value for the t-Test (Paired Two Sample for Means), α = 0.05. 

Table 4. Results of GT testing—the reference database. 
 

Type Me x¯ sd rsd var 

Reference 77.11 76.78 33.01 0.43 1089.50 
TS 82.05 83.75 37.30 0.45 1391.05 
DS 76.07 88.97 41.05 0.46 1685.16 
Dev. TS 5.31 9.99 15.75 1.58 247.93 

Dev. DS 7.26 18.19 24.08 1.32 579.71 

Me—median; x¯—mean value; sd—standard deviation; rsd—relative standard deviation; var—variance; 
TS—System with the TKEO; DS—System without the TKEO; Dev.—deviation from the reference global tempo. 

 

Table 5. Results of the ABD testing for all recordings. 
 

 TS (s) DS (s) 

x¯ 2.30 2.84 
Me 1.81 2.57 

sd of the x¯ 1.90 2.17 

sd of the Me 2.14 2.31 

TS—System with the TKEO; DS—System without the TKEO; Me—median, 
sd—standard deviation. 

x¯—mean value; 
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Table 6. Results of the ABD testing for recordings with the average ABD < 1 s. 

 

Dev. < 1 s in the Average of TS <1 s in the Average of DS 
 

 TS DS TS  DS  

 x¯ Me x¯ Me x¯ Me x¯  Me 

Average 0.39 0.38 0.95 0.70 0.29 0.12 0.36 0.22 
 

TS—System with the TKEO; DS—System without the TKEO; Dev.—deviation from the reference beat positions; 
Me—median; x¯—mean value. 

 

Figure 13 shows differences between the reference GT and calculated GT of the TS and DS of the 

first database. The TS generally follows the reference tempo more accurately mainly because it more 

often determined the correct metric pulse. The DS shows greater local deviations of the GT from the 

tested tracks. 
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Figure 13. Visualisation of the GT computation—Ref, TS and DS estimation. 

Table 7. Differences between the estimated GT and the EAT for both systems. 
 

 TS      DS  

Track Beg A B C D E Beg A B C D E 

CD01 15.09 13.98 6.61 3.73 5.92 3.80 8.49 22.92 6.61 3.73 1.82 3.80 

CD02 14.49 0.81 6.53 1.51 6.74 3.57 14.49 9.27 2.84 1.51 3.50 1.40 

CD03 14.36 1.41 7.15 5.20 4.94 6.99 11.17 10.16 11.13 5.20 13.64 6.99 

. . . . . . . . . . . . . 

. . .  . . . . . . . . . 

. . . . . . . . . . . . . 

CD33 3.83 6.60 9.63 0.79 5.26 3.47 3.83 6.60 9.63 0.79 11.74 5.52 

Average 7.56 6.57 8.13 1.78 9.01 5.49 6.92 7.17 8.71 1.78 9.58 5.38 

Result 6.42 6.59 

All values are in BPM—Beats Per Minute. 
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4. Discussion 

Generally, the newly proposed method provided some improvements to the reference database. 

We analyzed 30 tracks and the results are reported in Table 4. The results suggest that the TKEO can 

help the proposed beat tracking system to pick better onset candidates for the beat positions and 

to slightly improve the GT calculation. The difference was about 8 BPM on average for all tested 

recordings of the first database. However, many recordings reported the same estimated GT for both 

methods. Then, the ABD was calculated. We used the reference database with manually corrected beat 

positions to determine the accuracy of both systems. We did not use F-measures, but rather average 

differences between consecutive beats. P values show that there is a difference between both systems. 

This gives us an idea of how close the beat tracking was to the reference positions. The system with 

the TKEO generally reported lower ABD for all settings used. The results suggest that the TKEO 

pre-processing improved the accuracy of the beat tracking system. This does not apply for the general 

onset detection function. Onset detection accuracy was reduced in most cases. The only exception was 

the recording of the clarinet. 

As far as the string quartet database is concerned, the results were again slightly in favour of 

the system based on TKEO. All 33 recordings of the second database were tested. The difference 

between the average deviation from the EAT of the TS and the DS was only 0.17 BPM, and therefore 

both systems had more or less the same detection accuracy. We chose such complex music to see how 

the enhancement would deal with a very difficult task. The actual usefulness of the application also 

depends on the settings of selected parameters, not just on the TKEO pre-processing. 

The idea of using TKEO in the pre-processing stage was to help the onset detection function 

to find more relevant onsets and therefore enhance the beat tracking system in terms of choosing 

better candidates for beat positions. It reduced the number of insignificant onsets detected. Onset 

detection accuracy has usually been reduced, but the final beat detection output may be more stable; 

the algorithm chooses from less and more important onsets. This is useful for analyzing tracks where 

we suspect a stable and non-agogic rhythm. We tested the effect of the TKEO to see how the output 

detection function would behave. We did not change the parameters such as tightness of the beat 

tracking system for each tested track; the correct setting (set for the particular piece of music) would 

yield better results for complex music analysis. 

The limitation of this study is that the EAT in the string quartet database may be a reference 

value for the beat tracking system, but it is not the actual GT of a particular track since we cannot 

include any expressive elements in it. It does not provide any information about beat positions or local 

tempo changes. The same thing applies to the reference global tempo. In enhanced interpretation 

analysis, we need to track all beat positions in the segment and compare them to the real beat positions. 

However, in this case, we analysed relatively stable tracks with no abrupt tempo changes. In the 

future, we would like to use this system to create a database and its additional information about 

manually corrected beat positions of segmented string quartet music. The impact of the TKEO on 

audio recordings will be tested in more detail in our future work. 

Cooperation between researchers and musicologists is the crucial part of such interdisciplinary 

projects and MIR science field. Different base knowledge and tendencies can lead to mutual 

misunderstandings, but both sides could benefit greatly from each other. Projects like these are 

the important bridge for computer scientists, MIR researchers and musicologists. 

5. Conclusions 

This study introduces an enhancement of the conventional beat tracking system by adding the 

TKEO into the pre-processing stage. It briefly describes the onset detection function and the beat 

tracking method with its possible application. The onset detection accuracy decreased in most analyzed 

tracks, but the accuracy of the GT detection and the ABD detection increased. 

The influence of the TKEO was tested on different recordings and it was found, that in the case 

of woodwind instruments, the TKEO increased the onset detection accuracy. This phenomenon will 
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be studied in our future work. We would like to focus on the possible applications of the TKEO 

on music recordings in general. The TKEO is changing the magnitude of frequency components in 

a signal and acts as a filter. This could be the cause of increased onset detection accuracy, e.g., for the 

clarinet example. 

The estimation of the GT was improved in the reference database. The average deviation from 

the reference GT in the reference database is 9.99 BPM (11.28%), which improves the conventional 

methodology, where the average deviation is 18.19 BPM (17.74%). P-values indicate that there is a clear 

difference between proposed systems. Both systems were also tested on the string quartet database. 

In this case, however, the results are not convincing. The proposed TS will be further used in the 

subsequent music analysis of the string quartet database. The aim is to create an automated system for 

capturing beat positions that are as close as possible to the actual beat positions in the recordings even 

for the complex music such as string quartet. In this way, it is possible to minimize the time required 

for manual processing and labelling. This study has a pilot character and provides some suggestions 

for improving the beat tracking system for music analysis. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ABD Average Beat Deviation 

BPM Beats Per Minute 

DS Default System without the TKEO 

EAT Estimated Average Tempo 

EMG Electromyography 

GT Global Tempo 

MIR Music Information Retrieval 

STFT Short-Time Fourier Transform 

TKEO Teager–Kaiser Energy Operator 

TS System with the TKEO included 
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Appendix A. Sheet Music—The First Page of the First Movement 

 

 

Quartett "From my life" 
I. Bedřich Smetana 

Allegro vivo appassionato (1824–1884) 

 

Violino I 

 
 

 

Violino II 

 

 

 

Viola 
 

 

Violoncello 

 

sff pp 
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Figure A1. The beginning of the first movement. 
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Appendix B. Complete Tables and Results 

Table A1. The EAT of all motifs of the second database. 
 

Track Beg A B C D E 

CD01 80.61 69.37 34.41 88.56 55.60 74.50 
CD02 77.80 69.03 44.14 81.84 59.52 72.43 
CD03 77.93 73.19 41.60 87.09 62.36 79.14 
CD04 80.48 75.08 48.98 80.37 69.14 80.29 
CD05 69.54 66.78 32.83 80.31 54.60 71.15 
CD06 72.74 72.14 42.29 74.41 61.98 76.16 
CD07 75.94 65.71 39.33 83.06 58.04 78.17 
CD08 69.69 66.42 34.47 79.98 53.66 75.13 
CD09 83.43 72.48 40.13 83.70 60.57 72.67 
CD10 82.92 72.18 40.70 88.56 61.31 74.12 
CD11 70.92 63.49 43.34 73.65 56.77 67.07 
CD12 82.35 70.91 48.36 83.76 63.02 77.76 
CD13 69.27 61.71 45.28 79.08 54.63 70.93 
CD14 81.28 69.06 46.33 88.24 61.20 77.35 
CD15 74.60 68.23 30.19 85.12 54.28 69.92 
CD16 79.06 68.87 39.59 87.81 59.46 76.42 
CD17 71.01 58.38 37.35 75.82 51.37 68.52 
CD18 72.79 71.59 51.06 75.13 64.15 70.81 
CD19 74.14 73.17 56.74 80.47 69.02 73.39 
CD20 77.35 74.48 51.75 82.27 68.16 80.73 
CD21 77.16 71.72 47.76 82.49 64.75 73.03 
CD22 73.36 62.91 42.74 81.54 55.77 74.87 
CD23 73.04 65.89 34.78 80.50 53.31 77.35 
CD24 78.50 78.14 58.36 79.81 70.06 80.80 
CD25 75.61 72.73 44.04 80.70 62.30 73.63 
CD26 83.75 77.92 46.27 93.48 66.58 84.73 
CD27 82.60 76.43 49.74 83.26 68.00 76.29 
CD28 72.92 65.80 48.48 80.62 62.24 71.73 
CD29 70.25 63.09 37.87 74.09 55.33 58.12 
CD30 68.26 65.35 38.17 70.01 56.31 67.07 
CD31 73.78 71.06 43.15 79.71 59.63 75.56 
CD32 83.58 72.07 40.00 82.14 60.55 71.04 

CD33 76.92 63.24 42.05 74.62 56.26 68.31 

All values are in BPM—Beats Per Minute. 



 

American Journal of Applied Sciences Volume 15, Issue 1, 2025 

 

 
Table A2. Reference GT and computed GT of the reference database. 

 

Track No. 
Reference TS DS TS DS 

 (BPM) (BPM) (BPM) Dev. (BPM) Dev. (BPM) 

1 48.15 47.85 47.85 0.30 0.30 
2 66.99 73.83 73.83 6.84 6.84 
3 68.00 95.70 95.70 27.70 27.70 
4 60.41 48.75 68.00 11.66 7.59 
5 39.71 42.36 42.36 2.65 2.65 
6 62.76 47.85 47.85 14.91 14.91 
7 53.67 54.98 54.98 1.31 1.31 
8 136.05 136.00 143.55 0.05 7.50 
9 55.15 56.17 56.17 1.02 1.02 

10 75.86 80.75 78.30 4.89 2.44 
11 91.63 95.70 95.70 4.07 4.07 
12 87.27 86.13 184.57 1.14 97.30 
13 93.75 99.38 95.70 5.63 1.95 
14 75.38 86.13 89.10 10.75 13.72 
15 35.34 42.36 42.36 7.02 7.02 
16 70.01 66.26 66.26 3.75 3.75 
17 72.20 73.83 73.83 1.63 1.63 
18 82.87 89.10 117.45 6.23 34.58 
19 41.99 46.98 42.36 4.99 0.37 
20 80.65 99.38 123.05 18.73 42.40 
21 72.73 83.35 78.30 10.62 5.57 
22 35.09 44.55 63.02 9.46 27.93 
23 89.71 172.27 172.27 82.56 82.56 
24 51.81 51.68 51.68 0.13 0.13 
25 63.56 99.38 103.36 35.82 39.80 
26 117.46 129.20 129.20 11.74 11.74 
27 200.00 198.77 184.57 1.23 15.43 
28 116.73 117.45 61.52 0.72 55.21 
29 95.09 83.35 123.05 11.74 27.96 

30 63.36 63.02 63.02 0.34 0.34 

Average 76.78 83.75 88.97 9.99 18.19 

P-value 0.038 0.024 

TS—System with the TKEO; DS—Default system without the TKEO; Dev.—deviation from the reference 
global tempo; BPM—Beats Per Minute; P—p-value for the t-Test (Paired Two Sample for Means), α = 0.05. 
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Table A3. Differences between the estimated GT and the EAT for both systems. 

 

 TS      DS  

Track Beg A B  C D E Beg A B C D E 

CD01 15.09 13.98 6.61  3.73 5.92 3.80 8.49 22.92 6.61 3.73 1.82 3.80 
CD02 14.49 0.81 6.53  1.51 6.74 3.57 14.49 9.27 2.84 1.51 3.50 1.40 
CD03 14.36 1.41 7.15  5.20 4.94 6.99 11.17 10.16 11.13 5.20 13.64 6.99 
CD04 0.27 0.92 34.37  0.38 17.16 3.06 0.27 3.22 31.77 0.38 9.16 3.06 
CD05 4.29 3.06 4.62  0.44 10.00 7.15 8.76 11.52 10.24 3.04 21.40 4.89 
CD06 3.26 6.16 8.38  1.59 4.28 4.59 3.26 6.16 5.56 1.59 14.02 4.59 
CD07 7.41 8.12 8.42  3.07 9.96 2.58 7.41 6.07 14.50 3.07 15.79 7.96 
CD08 11.06 9.58 7.21  3.37 10.94 5.62 11.06 9.58 6.55 0.77 10.94 5.62 
CD09 8.86 5.82 3.67  2.43 15.43 3.33 8.86 5.82 3.22 2.43 15.43 5.63 
CD10 12.78 6.12 15.47  0.54 12.52 4.18 9.37 3.82 10.98 0.54 3.89 6.63 
CD11 7.38 4.51 16.75  2.35 7.83 2.77 5.08 0.47 16.75 2.35 0.65 0.93 
CD12 1.00 6.31 7.81  3.01 3.24 2.99 1.00 7.39 5.47 0.41 1.58 5.59 
CD13 9.03 14.29 10.89  1.67 5.46 2.90 6.73 19.04 8.55 1.67 15.21 2.90 
CD14 11.01 11.69 8.65  0.86 8.64 3.40 11.01 6.94 8.65 4.05 0.32 8.78 
CD15 11.53 12.52 8.38  1.01 5.81 10.83 8.75 12.52 7.81 1.01 19.55 19.18 
CD16 13.23 7.13 12.09  1.29 10.38 2.59 13.23 9.43 5.74 1.29 8.54 1.88 
CD17 7.29 13.40 5.72  2.48 4.80 5.31 9.74 0.96 9.63 0.18 2.46 9.78 
CD18 5.51 6.71 10.46  0.87 1.13 21.48 3.21 6.71 0.62 0.87 4.06 0.97 
CD19 1.86 10.18 4.01  0.28 11.73 4.91 1.86 7.58 13.10 0.28 9.28 4.91 
CD20 3.40 8.87 0.98  1.08 3.56 0.02 3.40 6.27 0.98 1.08 0.16 11.56 
CD21 6.19 4.28 2.91  0.86 11.25 7.72 8.97 6.58 10.97 0.86 0.15 7.72 
CD22 7.39 3.35 11.09  1.81 14.07 11.26 12.77 1.69 9.99 1.81 5.75 3.43 
CD23 16.06 3.95 10.55  2.85 2.86 3.40 16.06 10.11 5.59 2.85 24.99 3.40 
CD24 0.20 5.21 1.73  0.94 10.69 8.30 2.25 2.61 0.37 0.94 10.69 2.55 
CD25 2.69 8.02 0.51  2.65 16.00 2.37 2.69 10.62 4.71 2.65 9.57 2.37 
CD26 8.54 6.14 11.15  2.22 16.77 7.56 5.35 6.14 11.15 2.22 14.17 4.37 
CD27 3.53 6.92 5.24  0.09 15.35 0.29 3.53 6.92 4.09 0.09 12.75 4.46 
CD28 5.38 10.20 2.19  2.73 7.60 9.02 0.91 1.20 3.20 2.73 7.60 11.62 
CD29 8.05 1.51 8.27  4.21 10.93 0.61 8.05 1.57 19.55 4.21 7.69 0.70 
CD30 7.74 2.33 7.16  0.17 2.48 22.03 0.26 5.26 6.38 2.01 9.95 6.76 
CD31 4.52 2.77 6.54  1.04 10.21 0.44 4.52 2.77 14.27 1.04 14.20 0.44 
CD32 12.12 3.93 3.07  1.21 13.28 2.79 12.12 8.68 6.98 1.21 15.45 7.26 

CD33 3.83 6.60 9.63  0.79 5.26 3.47 3.83 6.60 9.63 0.79 11.74 5.52 

Average 7.56 6.57 8.13  1.78 9.01 5.49 6.92 7.17 8.71 1.78 9.58 5.38 

Result 6.42 6.59 
 

All values are in BPM—Beats Per Minute. 
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