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Abstract: This work focuses on a machine learning based detection of ionospheric scintillation 

events affecting Global Navigation Satellite System (GNSS) signals. We here extend the recent 

detection results based on Decision Trees, designing a semi-supervised detection system based on 

the DeepInfomax approach recently proposed. The paper shows that it is possible to achieve good 

classification accuracy while reducing the amount of time that human experts must spend manually 

labelling the datasets for the training of supervised algorithms. The proposed method is scalable and 

reduces the required percentage of annotated samples to achieve a given performance, making it 

a viable candidate for a realistic deployment of scintillation detection in software defined GNSS 

receivers. 
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1. Introduction 

Ionospheric scintillations are defined as phase and amplitude variations of trans-ionospheric 

radio signals, caused by irregularities and rapid fluctuations of the electron content in the upper 

layers of atmosphere. In this work, we focus on the effect of scintillation on Global Navigation 

Satellite Systems (GNSS) signals. Whether the main purpose of the application under consideration 

is navigation, in which the user demands high quality measurements and scintillation mitigation or 

rejection, or a scientific application, in which the user is interested in selecting scintillation events within 

huge datasets, a clean, fast, and precise detection of scintillation events is of paramount importance. 

The scientific literature on the study of scintillations and their effect on GNSS systems is wide and 

complete, and therefore is outside the aim of this paper. We refer the reader to several sources to study 

in depth the scintillation topic [1–4], the receiver design, and signal processing techniques [5–7]. 

The idea of using machine learning techniques for scintillation detection is not new. The need for 

machine learning solutions is due to the fact that manual classification of scintillation events based on 

visual inspection of scintillation indices time series is nowadays unpractical, given the amount of data. 

Similarly, simple heuristic algorithms, while requiring barely any tuning time from a human expert, 

have limited performance. Examples are algorithms that decide whether scintillation is occurring 

or not based on a simple threshold crossings of quantities such as the amplitude scintillation index 

(S4), the carrier to noise power spectral density ratio (C/N0) or the satellite elevation angle. It has 

been proven that machine learning algorithms can successfully replace and overcome traditional 

detection techniques. 
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Such approach was originally proposed in [8,9], where the authors use an automatic scintillation 

detector based on a supervised machine learning technique called support vector machine (SVM), 

respectively for amplitude and phase scintillation. This approach provides good detection results 

but introduces a Fast Fourier Tranform (FFT) operation on the data over windows of 3 min, 

thus reducing the temporal resolution of the detection results. A second disadvantage is that the input 

data need to be pre-filtered at an elevation mask of 30◦ to reduce multipath false alarms, at the expenses 

of a potential waste of useful and important information. An updated version of the algorithm is 

presented in [10]. Other works propose using decision tree and random forest algorithms and low level 

signal observables, such as the in-phase and quadrature correlation outputs of the receiver tracking 

loop [11,12]. This approach is able to reduce the false alarms rate due to the ambiguity between 

scintillation and multipath typical of the classical approaches based on the analysis of amplitude 

scintillation index and provide an early run-time alert. Another advantage is that, by exploiting the 

high rate correlator outputs, a finer time resolution in detection is obtained [13,14]. A more generic 

survey of data mining techniques is given in [15]. However, this method does not only rely on GNSS 

observations, but also includes external data, such as sensors and online forecast services. 

The biggest problem with machine learning based classification is that datasets must be labeled 

manually by experts, wasting precious resources in terms of time, and thus preventing large scale 

scalability of the method [8,11]. The techniques proposed in the literature and described above partially 

solve the problem as they are based on fully-supervised learning: a significant portion of input data 

must be manually labeled to assist the learning process of the algorithm. We here propose to switch 

to a paradigm centered around semi-supervised learning, in which in contrast to fully supervised 

learning the label information is not required for all the data, and some entries can be thus classified 

with an “unknown” label. 

In recent years, deep learning based solutions [16] for classification tasks have seen tremendous 

improvements in terms of performance. Neural networks in particular, however, have been rarely 

used as detection algorithms, one exception being [17]. Nevertheless, they have been successfully 

deployed for complex modeling of electron content in the ionosphere [18,19]. 

Usually, deep learning based semi-supervised classifiers (see, for example, [20]), reduce the 

dimensionality of the unlabeled data X using unsupervised learning, then build a classifier using only 

the compressed labeled datapoints F for the datapoints where the corresponding label Y is available, 

as depicted in the scheme of Figure 1. 

 
 

unsupervised 
Y (if available)  

supervised 
X 

feature extraction 
F 

Figure 1. Semi-supervised learning. Feature extraction is performed in an unsupervised fashion, while 

classification is based on a supervised approach (labels). 

In this paper, we make use of the DeepInfomax [21] approach in which a variational representation 

of mutual information [22] is used to build an unsupervised, information theoretic, feature extractor. 

Differently from other unsupervised techniques such as Variational Autoencoders [20] that require 

both an encoder and a decoder, the considered method only needs and encoder, almost halving the 

complexity. Variational techniques powered by neural networks for mutual information estimation, 

and in general divergences between probabilities, have been widely used in the literature [22–26]. 

The complete pipeline we propose consists of firstly compressing the input time series into smaller 

cardinality vectors, and then feed these vectors to a binary classifier for scintillation detection. 

During training, the unsupervised compression is performed for all datapoints, whereas, obviously, 

the training of the classifier is performed only for the labeled datapoints. 

classifier 
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The aim of this paper is then to develop a new scintillation detection strategy based on 

Convolutional Neural Networks and semi-supervised learning. In more detail, we extend the results 

and approaches presented in [11], in which classification of scintillation events is performed using 

supervised decision trees. While showing good performance, this method has two fundamental 

problems. First, it lacks the capability of considering as a whole a single scintillation event sampled at 

different time instants, as the time feature is not taken into account. Second, it requires to have a fully 

labeled dataset, where the process of annotation had to be done manually by a team of experts in the 

field. We instead propose a solution that mitigates both problems by using a system that naturally: 

• handles subsequent samples in time, by applying an overlapping time window to all features, 
thus including the information about the temporal correlation; 

• requires only a smaller portion of the dataset to be labeled. 

We show that to reach the same level of accuracy, just about 20% of datapoints must be manually 

labeled. For a faithful comparison, we used the same dataset as in [11] and we performed statistical 

measurements of testing classification performance using the same splitting of datasets for training 

and testing. Moreover, when the amount of labeled datapoints is augmented, the proposed method 

reaches extremely high performance with a top accuracy on the test set of 0.9993. 

The overview of the paper is then the following: in Section 2, we discuss the need for unsupervised 

compression; in Section 3, we give a brief overview of the DeepInfomax approach that we further 

expand in Appendix A; in Section 4, we describe the considered datasets and their properties; 

in Section 5, we give an overview of the system architecture and training and testing procedure; 

and, in Section 6, we show the results of the proposed classification method. Finally, in Section 8, 

we discuss on the results and suggest possible future work directions. We also include a complete 

Appendix B to briefly describe the neural network architectures and training technicalities. 

2. The Need for Unsupervised Compression 

As depicted in Figure 1, one possible semi-supervised classification scheme is composed of two 

main blocks: an unsupervised feature extractor and a supervised classifier that is trained using as input 

the features. Notice that for some features the label correspondence is missing. The attentive reader 

might wonder why the first portion of the deep learning based scheme, the unsupervised encoding part, 

depicted in Figure 1, is necessary at all and a simple training of a classifier on the labeled portion of the 

dataset is not sufficient. The reason is that, as explained in the introduction (Section 1), in this work, we 

improved on two weak points of the previous decision tree based classification algorithms: being able 

to consider a collection in time of the features and to reduce the number of labeled training points. 

Generally speaking, in machine learning, these two requirements are in conflict: when increasing the 

cardinality of the inputs, as a rule of thumb, to maintain a good level of performance the number of 

training points must be increased. This is typically solved when dealing with high-dimensional inputs 

either by performing some form of manual feature engineering and reducing the dimensionality of the 

input or by increasing the amount of labeled data by acquiring larger labeled datasets. The approach 

of semi-supervised deep learning is instead different. Given a large dataset in terms of number of 

samples, with a large input cardinality, with a small number of labeled datapoints, an automatic, 

unsupervised, end-to-end feature extraction (we use interchangeably the term feature extraction or 

compression.) is performed on the whole dataset. A classifier is then trained using as inputs the small 

feature vectors thus resolving the problem of having few labeled datapoints, having the input be a 

small cardinality, a small number of labeled samples is sufficient to maintain the required level of 

performance. It will be shown in Section 5 in this work we consider a compression ratio of 32:1. In this 

work, we decided to use an information theoretic based feature extraction scheme [21]. 
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3. The DeepInfomax Approach 

In this section, we give a brief overview of the DeepInfomax approach [21]. Appendix A provides 

mode details about the technique. Figure 2 schematically depicts the idea. 

 
two-stage feature extraction 

 

Figure 2. Deep Infomax—high level scheme. 

The main idea is to build a two stage compression, using a cascade of two neural networks 
e1 (·) and e2 (·), of an input X, respectively generating a first equivalent feature H = e1 (X) and a 

η β η 

second one F = e2 (H), such that the Mutual Information (MI) between H, F is maximized. In practice, 

as also explained in [21], a proxy to the mutual information that worked better in practice, the Jensen 

Shannon Divergence, was used. The authors in [21] introduce, and also maximize, a new metric: 

the Local Mutual Information. It is defined as the sum of all mutual information between each element 

H(z),  z = 1, · · · |H| of the variable H, that is, a multidimensional random vector and the whole 
|H|   feature vector F. In equations, MI  1  I  H(z); F , where I A, B is the mutual information 

 

(MI) between A and B. 

loc = |H| 
∑ ( ) 

z=1 

The sketch of the architecture we consider in our work is depicted in Figure 3. We found 

that, for this work, considering only the local Mutual Information was the best choice in terms of 

performance. Moreover, a Uniform Prior regularizer, similarly to the one described in [21], was included 

to ensure that the features F cover evenly the latent space. 

 

Figure 3. High level scheme of architecture used in this work. 

It is possible to show ([21,22], and also Appendix A) that a Local MI estimator can be built as 

depicted in Figure 4. 
 

Figure 4. Detailed representation of high level scheme depicted in Figure 3. 
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Couples extracted from the joint and marginal distributions of H, F are built (respectively p(H, F), 

p(H)p(F)). These couples are fed to two copies of the same network gloc (·) whose output is the 

input of a cost function described by Equation (A7). Notice that, to build couples sampled from the 
joint distribution p(H, F), it is sufficient to observe joint realizations of variables H, F, while, to build 

samples whose distribution is the product of the marginals p(H)p(F), we can instead randomly shuffle 

one of the two sets of variables H or F and build new couples with the scrambled versions. 

To perform regularization instead, always Figure 4, a discriminator network is fed with both the 

random variables uniformly generated and the features F, and trained to distinguish among the two. 

The rest of the system is trained adversarially [27] to fool the discriminator, and it is possible to show 

that, in an equilibrium regime, the distribution of F is the multivariate uniform distribution. 

The whole process serves the purpose of extracting high quality and informative feature vectors F 

in an unsupervised way (i.e., no external labels are needed), which can be used for other downstream 

tasks such as classification or clustering. 

4. The Data Collections 

In this work, we use the same datasets as in [11]. The dataset is composed by a multivariate 

10-dimensional time series composed of the following features: I and Q correlator outputs, sometimes 

referred as GNSS raw data; Signal Intensity (SI), computed as SI = I2 + Q2; the raw phase ζ of the 

received signal; the amplitude scintillation index S4; the C/N0; the satellite elevation and azimuth 

angles; the de-trended measure of carrier raw phase φ; and the phase scintillation index σφ. I, Q, 

the raw phase and consequently SI are provided at 50 Hz; the other observables are provided at 1 Hz. 

The overall dataset is then built by performing a moving average with integration time of 60 s and 

downsampling the high-rate features at 1 Hz. Before processing the data with neural networks a 

standard normalization, mean removal and division by standard deviation feature by feature has 

been performed. 

Data have been collected in Hanoi, Vietnam (11◦ 20’ N geo-magnetic latitude on 26 March and 

2 April 2015. The measurements have been recorded by means of a Software Defined Radio (SDR) 

receiver and data grabber, as detailed in [28,29]. L1 C/A signals of 20 Global Positioning System 

(GPS) satellites were considered, corresponding to 169955 entries, recorded over a time interval 

of approximately 6 h, with a scintillation rate of 1:4. The ground truth label has been determined 

manually, based on the visual inspection of the observables. 

To avoid confusion, it is important to underline that all the datasets used in this work have been 

manually annotated, as a ground truth is needed to measure classification accuracy performance. In our 

experiments, we artificially remove some of the labels to simulate a semi-supervised learning scenario. 

5. Overview of Functioning and System Description 

As mentioned earlier, one of our goals is to be able to harvest the information contained in the 

temporal correlation among features. For this reason, we consider as input of the system sliding 

windows of a multivariate serie Xn built as described in Section 4. The input multivariate time series 

has thus cardinality equal to 10, or, in neural network language, the number of input channels is 10. 

If we denote the sliding window size as Nwin, we can formally define the input as the [10 × Nwin] matrix 
: 

1 
n−Nwin+1 

 
1 
n−Nwin+2 . . . X1 X1 

T 

Xn = 
 

. . . . . . . . . . . . . . . , (1) 

    

where n is the last time instant of the window and Xj is the jth feature We decided to use a causal time 

window such that the method could be applied to a real-time detection scenario. We allow for a delay, 

such as in a post processing application, and define the window as 

X X n−1 X 

X 

10 
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The performance will improve. Notice that in terms of coding the change is trivial with respect to 

what we implemented, a simple offset in the indexing is sufficient to switch between the two modalities. 

Notice also that for this second implementation Nwin must be odd. In this work, we consider the first 

variant and select Nwin = 64. To test the performance of the proposed method, the entire dataset is 

split into a training part (90%) and a testing part (10%), using the same procedure as in [11]. 

During training, the sliding windows are processed and compressed according to a variation of 

DeepInfomax scheme [21] (highlighted in Section 3 and expanded in Appendix A) that produces a 

feature vector. As previously introduced, this first stage of training is completely unsupervised and, 

for our application, the purpose of this process is to create the lower cardinality equivalent feature 

vector that will be used as input of the classifier. To make the picture clearer, the cardinality of the 

raw input is the size to the 10-dimensional sliding windows, i.e., 10 × Nwin = 640, while, in this work, 

we found that a well performing feature vector cardinality (|F|) is 20. Thus, for all the time instants for 

which the scintillation label is available, a classifier is trained with the corresponding feature vector. 

Notice that the training of compression scheme and classifier is jointly performed end to end using 

backpropagation. 

Figure 5 depicts the global architecture of the system used during training. In the spirit of 

focusing on the important high level description of the method, all the details related to actual 

networks architectures and optimizer details are relegated to Appendix B. As anticipated, the first part 

of the scheme is related to the unsupervised feature extraction, while the second part is devoted to 

classification of labeled datapoints. The whole procedure can be summarized as follows, considering a 

batch based training: 

1. A batch of input time windows {Xr} is is sampled from the training set. 

2. The inputs are processed by a first convolutional neural network e1 (·) and a first level compression 

is performed, generating variables {Hr}. 
3. Through e2 (·), a second neural network with both convolutional and fully connected layers, 

the final features {Fr} are built. 

4. Starting from this point of the computation chain, three different parallel processes are performed: 

(i) classification of features {Fr} to determine whether a given time instant r corresponds to 

scintillation. To be completely precise, as explained in Appendix B, the actual input to the 

classifier is the concatenation of feature vector F and the result of skip connections taken 

from the layers of the first convolutional network e1 (·). This is done only for the time 

instants for which there is a reference. For all time instants for which a reference signal 

exists, the corresponding feature Fr is fed to fully connected classifier cψ(·) that receives as 

reference signal Yr, the corresponding label scintillation/no scintillation for time instant r. 

(ii) local Mutual Information (MI) computation: starting from the collections of {(Hr, Fr)} 
couples extracted from the joint and marginal distributions are built. These couples are fed 

to the network gloc (·) whose output is the input of the CMI,local cost function, defined in (A7). 

(iii) adversarial matc
θ
hing of features F distribution to a target uniform distribution. Random 

variables F˜ ∼ U(−1, 1) are generated.  A discriminator is fed with both the random 

variables generated and the F (the rest of the system is trained adversarially [27] to fool the 

discriminator). This is used as a regularized to ensure that the features F cover evenly the 

latent space. 

5. Standard backpropagation is performed, the cost function considered is C = CMI,local + Cadversarial + 

Cclassi fication, where the subscripts represent the various component of the cost function. 

X . (2) 
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Figure 5. Neural Network architecture (Training). The dashed red box contains the unsupervised 

feature extraction part, while the orange one contains the supervised classification. 

During testing, the only portion of the network that is used is the one related to classification, 

for simplicity depicted in Figure 6 that is clearly much simpler and lighter. In a realistic scenario, the 

training could be then performed offline on powerful machines while the lighter scintillation detection 

system could be subsequently uploaded on SDR receivers where the computational capabilities and 

the maximum power consumption are stricter. 

 

Figure 6. Neural Network architecture (Testing). 

6. Experiments 

In this section, we present experimental results of the DeepInfomax method, compared with 

the Decision Tree proposed in [11], varying the number of labeled datapoints, by comparing the 

classification accuracy with respect to the baseline.The dataset used for the experiments is the same 

as in [11], but we neither train or test the method on the first 63 s of each data collection, due to the 

necessity of having a full window of samples. For each of the experiments, the labeled datapoints are 

randomly extracted from the training set. In the following, we present results in terms of standard 

machine learning performance indicators that we hereafter define. Denote as C the true class to which a 

datapoint belongs (0 for non scintillation, 1 for scintillation) and as Cˆ the estimated class, i.e., the output 

of the classifier. We can define four joint probabilities: 

 

• true negative: Tn = P Cˆ = 0, C = 0 , 

 
Derived from these four quantities are the following ones: 

• accuracy: A = Tp + Tn, 

• precision: P = T 
Tp  , 

• recall: R = T 
Tp  , 

• F-score: Fsc = 2  RP  . 

Figure 7 reports the main result of this paper: a comparison between the proposed method and 

the decision tree based one, varying the number of labeled datapoints. For sake of completeness, it is 

gloc (·) θ 

Y (if available) 

 
supervised classification F 

 
 (·) η 

H F 
r (·) ζ 

F˜ ∼ U(−1, 1) 

 gloc (·) θ 

unsupervised feature extraction 
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β e2 (·) 
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• false negative: Fn = P . 
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furthermore necessary to clarify that, when dealing with the decision tree classification algorithm, the 

number of labeled datapoints (x-axis of Figure 7) coincides with the size of the dataset used for training, 

since there is no possibility to include unlabeled datapoints in the learning pipeline. Instead, with our 

approach, the size of the training dataset is always the same (90% of the complete dataset, roughly 

150,000 datapoints) but only a portion of the datapoints is labeled. 

The improvement in terms of performance is evident. First, it is worth noticing that the proposed 

DeepInfomax algorithm outperforms the Decision Tree technique, both in terms of accuracy and of 

F-score, for the same number of labeled elements. Second, a much lower number of labeled datapoints 

is required when using DeepInfomax to attain similar levels of accuracy and F-score. As the number of 

labeled points increases, the accuracy reaches a top value on the test set of 0.9993 for DeepInfomax, 

compared to the value 0.9824 for the Decision Tree. 

It is important to notice that, even if from a performance point of view, the results are excellent, 

to attest to the usefulness of the method in a realistic application tests on many different datasets 

should be performed. It is possible, in fact, that bias is present in the considered data collection on 

which the networks base their decisions. However, this problem is complex and outside the scope of 

this paper; see [30]. 

Table 1 reports the results of the method for all the performance metrics introduced above. 

As expected, the performance increases with the increase of number of labeled datapoints, rapidly 

saturating to excellent levels. It is interesting to notice that the amount of false positives and false 

negatives is almost equivalent. 
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Figure 7. Accuracy and F-score of Deep Infomax (DIM) method and Decision Tree (DT) [11] method. 
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Table 1. Varying of the considered performance metrics versus percentage of labeled datapoints 

(% labeled). 
 

% Labeled Accuracy Precision Recall F-Score Tn Fp Fn Tp 

10 0.9633 0.9254 0.9267 0.9260 0.7339 0.0185 0.0182 0.2294 
20 0.9798 0.9757 0.9444 0.9598 0.7389 0.0060 0.0142 0.2409 
30 0.9929 0.9858 0.9860 0.9859 0.7463 0.0036 0.0035 0.2466 
40 0.9939 0.9825 0.9932 0.9878 0.7453 0.0044 0.0017 0.2486 
50 0.9963 0.9926 0.9928 0.9927 0.7459 0.0019 0.0018 0.2504 
60 0.9964 0.9924 0.9929 0.9927 0.7511 0.0019 0.0018 0.2452 
70 0.9975 0.9951 0.9949 0.9950 0.7485 0.0012 0.0013 0.2490 
80 0.9989 0.9984 0.9972 0.9978 0.7494 0.0004 0.0007 0.2494 
90 0.9985 0.9957 0.9984 0.9970 0.7438 0.0011 0.0004 0.2546 

100 0.9993 0.9986 0.9986 0.9986 0.7521 0.0004 0.0004 0.2472 

 

7. A Qualitative View on Features Importance 

Neural networks are known for being black box models, in which obtaining human understandable 

information from the inner functioning is extremely complex, if not impossible. Several techniques 

have been proposed to determine and inspect feature importance on networks decisions, usually with 

specific methods tailored to particular experiments and particular network architectures. 

In this subsection, we present results on features importance based on the simple but powerful 

features random permutation technique (similarly to the method introduced in [31]). The idea is to 

consider a trained classifier, randomly shuffle the variables one by one, and record the decrease in 

terms of performance. The measured decrease for all the shuffling experiments with respect to the 

baseline (the unshuffled dataset) is used as a proxy to determine the shuffled feature importance. 

Notice that this investigation strategy somehow lacks the capability of measuring joint higher order 

importance of features. In fact, two or more features can be extremely correlated and important for the 

considered task, but shuffling just one of them possibly does not impact performance in a substantial 

way, producing thus an underestimation of the feature importance. 

In Figure 8, we report the results of permutation tests on the classifier trained with percentage 

of labeled examples equal to 10%. Despite the possible limitations of the considered measurement 

technique, we obtain results that are consistent with the physical knowledge of the problem as well as 

previous results [11]. 

The features in order of importance (computed as the decrease in terms of accuracy with respect 

to the baseline) are: SI, θel , S4, C/N0, ζ, θaz, I, Q, σφ, φ . In the considered data collections, amplitude 

scintillations’ events are observed. It is thus reasonable to assess that Signal Intensity, SI, is the 

most important feature, with a drop in accuracy of more than 40% when the feature is randomly 

permuted. The three features θel , S4, C/N0 when permuted induces basically the same drop in terms of 

accuracy. Elevation angle θel is informative for classification: signal statistics for low elevation satellites 

greatly vary from the high in sky ones. The amplitude scintillation index S4 is clearly an important 

feature since amplitude scintillations events are considered. Finally, the C/N0 is yet another indirect 

measurement of signal intensity. Notice, moreover, that θel , S4, C/N0 are the three features used for 

the so-called semihard detection rule [11]. The raw phase and the azimuth angle appear to contain 

less information about the scintillation events and the features I, Q, σφ, φ have the lowest impact when 

randomized. It is possible that the relevant information contained in I, Q is already summarized in SI, 

while being the scintillation events linked to amplitude fluctuations the scintillation phase information 

is not that important. 

A complete analysis of feature importance would require to retrain from scratch different versions 

of the classifier by completely excluding some of the features from the beginning of training, but, since 

this is computationally expensive and outside the scope of this paper, we leave this analysis for 

future works. 
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Figure 8. Feature importance analysis using random permutation method. The lower the accuracy 

with respect to the baseline, the higher the feature importance. 

8. Conclusions 

In this paper, we propose a new semi-supervised architecture for GNSS scintillations detection 

based on the DeepInfomax approach. We showed that it is possible to reduce by a large amount 

the number of labeled datapoints to achieve a target performance, decreasing the amount of time 

human researcher must spend manually labelling datasets. Thanks to the considered architecture, 

it is possible to process temporal windows of features empowering the capabilities of the model. 

Furthermore, the overall accuracy and F-score are improved when compared to other machine learning 

techniques. Future directions include testing of the trained system on datasets as different as possible, 

in order to verify the generalization capabilities of the proposed method. Moreover, we will optimize 

the system to further reduce the amount of supervision in the view of switching to an almost fully 

unsupervised algorithm. 
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Appendix A. Variational Representation of Divergence and Deep Infomax 

In this appendix, we briefly review the concept of convex divergence between probability 

distributions, the particular case of mutual information (MI), and its usage for the construction 

of a feature extractor. 

The class of f-convex divergences between distributions of two random variables X1 ∼ p(x), 

X2 ∼ q(x) is defined as 

D(p||q) = p(x) f 
 q(x) 

dx. (A1) 

p(x) 

Besides from very special cases, such as multivariate Gaussian distributions, and simple f 

functions, no closed form exists for the computation. Moreover, in general, not even a parametric 

model about the distributions p, q is known, but all the information we have about the density functions 
is related to same empirical samples {xi }N1 , {xj }N2  drawn from the corresponding distributions. 

1 i=1 2 j=1 

The main idea of variational representation is that, roughly speaking, thanks to convex analysis, 

we can write the divergence as 

 

 

0 
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i=1 

p(x1)p(x2) 

∑ ∑ 2) )) 

scrambled 

( 1 2) ' ∑ − p 
i=1 

— θ (( 1 2) ) — ∑ 
j=1 

p θ (( 1 2)scrambled ) 
θ 

 

 

D(p||q) = sup 
g(x)∈G 

 ∫ 

p(x)g(x)dx − h

 ∫ 

q(x)t(g(x))dx

  

, (A2) 

where h, t are analytically known functions that can be computed once f is fixed. Thanks to this 

representation, we can estimate the divergence without knowing the actual distributions p, q using 

Monte Carlo methods: 

D p q sup 

( 
N1 

g xi h

  
N2 

t g xj 

!) 

. (A3) 

( || ) ' 
g(x)∈G 

∑ 
i=1 

( 1) − ∑ ( 
j=1 

( 2)) 

An attentive reader might notice that since there is the problem of extremization supg(x)∈G , 

we just moved the complexity of the problem to another point. The main idea discussed in [22], is that, 

however, what holds however is that 

D(p||q) = sup {·} ≥ sup {·} , 
g(x)∈G g(x)∈N 

where the space N ⊂ G is chosen such that we can perform “easily” optimization (such as the space 

of Neural Networks, i.e., gθ (x) is a neural network with parameters θ). We can finally estimate the 

divergence with the following approximation by optimizing (i.e., training) the network and using 

Monte Carlo techniques 

D p q sup 

( 
N1 

g xi h

  
N2 

t g  xj 

!) 

. (A4) 

( || ) ' 
θ 

∑ 
i=1 

θ ( 1) − ∑ ( 
j=1 

θ ( 2)) 

If gθ is sufficiently flexible, we can get arbitrarily close to the true value of the divergence. 

Notice that, since it is possible to compute the gradients of the functions g, h, t, end to end training 

is possible. In the particular case where the considered divergence is the mutual information (MI) 

between two random variables X1 and X2, and that thus the dataset is composed {(x1, x2)i}N , 
this corresponds to considering 

I (X1; X2) = D(p(x1, x2)||p(x1)p(x2)) = 

∫ 

p(x1, x2) log

 
 p(x1, x2) 

  

dx1dx2. (A5) 

 
That can be approximated as 

 

I (X1; X 

 

2) ' sup 

( 
N 

gθ ((x1, x2)i) − h

  
N  

t(g 

 

θ (( 

 

x1, x 

 
j 
scrambled 

!) 

, (A6) 
θ i=1 j=1 

where (x1, x2)i are simply samples taken from the dataset of joint variables (and thus extracted from 

p(x1, x2)) while (x1, x2)j are derived by randomly scrambling the indices of one of the two 

random variables in the dataset (thus having from a practical point of view statistical distribution 

equal to p(x1)p(x2)). Remember that the functions h(·), t(·) are known. Actually, in practice [21], 

maximizing instead the Jensen–Shannon Divergence (JSD) between p(x1)p(x2) and p(x1)p(x2) works 

better. After some manipulations, the final result is that the divergence can be simply written as: 

JSD X ; X sup 

( 
N 

s g x , x  i 

  
N 

s
  

g x , x  j 
 
!) 

, (A7) 

where sp(z) = log(1 + exp(z)) is called soft-plus function. 

Upon this idea in [21], they built an unsupervised compression tool of structured high dimensional 

random variables X (such as images or time series such as voice, etc...), called by the authors Deep 
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loc = 
|H| 

∑ 
z=1 

gglob 
(·) 

 

 
  η 

H F 
r (·) ζ 

F˜ ∼ U(−1, 1) 

 gloc (·)  

couples ∼ pH pF gloc (·)   

gglob 
(·) 

 

β  

 

 

Infomax. The (oversimplified) description of the system, schematically depicted in Figure A1 is that, 

using two neural network encoders e1 (·), e2 (·) and two discriminator networks gglob(·),gloc (·), it is 
η β θ θ 

possible to produce two latent representations H, F, respectively computed as H = e1 (X), F = e2 (H), 
η β 

|H|   

such that both the MI between H, F and the Local Mutual Information MI  1  I  H(z); F 

(a new metric introduced by the authors of [21]) are maximized. We moreover clarify the role of 

rζ (·) that is a discriminator network that tries to distinguish between samples drawn from F and 

samples drawn from a multivariate uniform distributions (F˜ ∼ U(−1, 1)). The system is trained 

adversarially [27], where rζ (·) and the rest of the network are the two competing agents (at equilibrium 

F has uniform distribution and this property is used to ensure that the latent variable covers evenly 

the latent space as a form of regularization). Notice that, in our implementation (see Section 5 and 

Appendix B), we only considered local mutual information and did not implement the portion of the 

system linked to the global, i.e., classical, mutual information. 

 
 

 

Figure A1. Deep Infomax architecture. 

Appendix B. Neural Networks’ Architectures 

In this appendix, we describe the details of the various networks as well as the optimizer settings. 

All the software has been written using MATLAB⃝R  (R2019a, The MathWorks, Inc.). In our notation, 

a single line of a table represents a layer. The convention is the following: at the beginning of the row, 

we have the type of layer as well as the nonlinearity associated with the layer (if present) and the 

indication of presence of BatchNorm (if the BN acronym is present). We have five types of layers in 

our network: 

1. Input layer. It simply indicates the input of the system, the matrix Xn. 

2. 1d convolutional layer (indicated as conv_1d). Its parameters are the number of taps of the filters 

(Ntaps), the number of filters (Nch) as well as the stride (the decimation period at the output of 

the layer). 

3. residual 1d convolutional layers: as standard conv_1d layers but with a residual connection 

(another set of filters that bypass the nonlinearity and whose output is summed to the output of 

the nonlinearity). 
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β 

β 

β 

θ 

 
4. flatten layer. It simply indicates that the input of this layer (a multivariate time serie) is flattened 

(vectorized). 

5. fully connected layers, whose argument is the dimension of the output. 

We consider as nonlinearities the rectified linear unit (ReLu), the sigmoid (Sigm), and the hyperbolic 

tangent (Tanh). In the first convolutional network (e1 (·)), we included skip connections of the last 

element of the various sequences at the two layers that are fed to the fully connected classifier cψ(·). 

All networks are trained using Adam optimizer with default settings and learning rate 0.001 for 

30 epochs with batch size equal to 64. 
 

Table A1. Architecture of e1 (·). 
 

input layer (size 64 × 1 × 10) (layer corresponding to the input X) 

res_conv1d (Ntaps = 4, Nch = 64, stride = 2), ReLu, BN 
 

res_conv1d (Ntaps = 4, Nch = 128, stride = 2), ReLu, BN (the output is H) 

 

Table A2. Architecture of e2 (·). 

res_conv1d (Ntaps = 4, Nch = 64, stride = 2), Relu, BN 

res_conv1d (Ntaps = 4, Nch = 128, stride = 2), Relu, BN 
 

flatten layer 
 

fully conncected (512), Relu, BN 

fully conncected (512), Relu, BN 

fully conncected (20),Tanh (the output is F) 

 

Table A3. Architecture of gloc (·). 

conv1d (Ntaps = 1, Nch = 64, stride = 1), Relu 

conv1d (Ntaps = 1, Nch = 64, stride = 1), Relu 

conv1d (Ntaps = 1, Nch = 1, stride = 1), Sigm 

Table A4. rζ (·). 
 

fully conncected (1024), Relu, BN 

fully conncected (512), Relu, BN 

fully connected (1), Sigm 

Table A5. Architecture of cψ (·). 

fully conncected (512), ReLu, BN 

fully conncected (512), ReLu, BN 
 

fully conncected (1), Sigm (the output is Cˆ) 
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