
 

American Journal of Applied Sciences Volume 15, Issue 1, 2025 

Article 

Optical Trapping, Sizing, and Probing Acoustic 
Modes of a Small Virus 

Jeffrey Burkhartsmeyer 1, Yanhong Wang 2,3, Kam Sing Wong 1 and Reuven Gordon 4,* 

1 Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong 

Kong, China 
2 School of Information and Communication Engineering, North University of China, No.3 Xueyuan Rd, 

Taiyuan 030051, China  
3 Academy for Advanced Interdisciplinary Research, North University of China, No.3 Xueyuan Rd, Taiyuan 

030051, China 
4 Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055 STN CSC, 

Victoria, BC V8W 3P6, Canada 

  

 

Featured Application: Sizing and measurement of vibrational frequencies of viruses could be 

useful for diagnostic purposes, as well as for targeted destruction via resonant excitation of virus 

particles. 

Abstract: Prior opto-mechanical techniques to measure vibrational frequencies of viruses work on 

large ensembles of particles, whereas, in this work, individually trapped viral particles were studied. 

Double nanohole (DNH) apertures in a gold film were used to achieve optical trapping of one of 

the smallest virus particles yet reported, PhiX174, which has a diameter of 25 nm. When a laser was 

focused onto these DNH apertures, it created high local fields due to plasmonic enhancement, which 

allowed stable trapping of small particles for prolonged periods at low powers. Two techniques 

were performed to characterize the virus particles. The particles were sized via an established 

autocorrelation analysis technique, and the acoustic modes were probed using the extraordinary 

acoustic Raman (EAR) method. The size of the trapped particle was determined to be 25 ± 3.8 nm, 

which is in good agreement with the established diameter of PhiX174. A peak in the EAR signal was 

observed at 32 GHz, which fits well with the predicted value from elastic theory. 
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1. Introduction 

Optical tweezers are under development since Ashkin’s seminal work, first reported in 1970 [1]. 

Optical trapping since burgeoned into a wide field ranging from studies on micron- and nanometer-scale 

biological systems, to fundamental physics of ultra-cold ions and atoms [1–27], as well as advanced 

methods to manipulate nanometer-scale materials such as via holographic optical tweezers [28–31]. 

While viruses were trapped before by optical tweezers, this was only for the largest viruses that are 

extremely elongated and, thus, easier to trap (e.g., Tobacco Mosaic Virus) [2], or just large (HIV) [3]. 

To stably trap smaller viruses with reasonable power, it is necessary to make use of field enhancement 

via plasmonic effects from nanostructures [4]. This is because simple optical tweezers take advantage 

of an intrinsic gradient force within the focus of a laser beam, due to the variation in intensity from 

beam waist to center. This is limited to a size scale on the order of hundreds of nanometers, due to the 

diffraction limit. 
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In contrast, plasmonic trapping takes advantage of local field enhancement in the vicinity of 

nanometer structured metals [3,11–20] and, thus, can overcome the diffraction limit. One such 

scheme is to create nanometer-scale apertures in metals, and to focus the trapping laser onto these 

apertures [3,5–11,17–22,27]. In particular, double nanohole (DNH) apertures were developed which 

create extremely high local field strengths in the area in between opposing sharp edges where the two 

holes meet. In this work, such DNH apertures are found to enable the trapping of one of the smallest 

virus particles reported, at powers low enough to leave the virus particles intact for several hours 

of experiment time. As a demonstration of possibilities to characterize individually trapped virus 

particles, two techniques were performed in this work. The particles were sized via an established 

autocorrelation analysis technique [5–8], and the acoustic modes were probed using an extraordinary 

acoustic Raman (EAR) method [9,10,22]. 

When a particle is trapped, it is subject to a gradient force field which tends to move it toward 

the position of a potential minimum. Due to Brownian motion, the particle will undergo random 

displacements. The restoring force from the optical trap is akin to that of a spring, proportional to the 

displacement to a first-order approximation. There is also drag due to the surrounding media, which is 

proportional to the radius of a spherical particle, to first order. If the restoring force of the optical trap 

is sufficient to overcome these thermally driven movements, the particle will remain within the trap 

and the displacements of the position will manifest as variations in the transmission signal. Analysis 

on these variations can be used to characterize both the trap stiffness and the particle diameter [5–8]. 

Details of this analysis are covered in Section 2. 

Determination of elastic properties and, in particular, vibrational frequencies of viral structures 

is much sought after [32–48]. Characteristic frequencies can be used as a “fingerprint” to identify 

viruses. It was also proposed to resonantly excite viruses to selectively destroy them, while leaving 

the surrounding material undisturbed as a potential method of treatment of disease [49–52]. This 

study demonstrates an easily implemented technique to directly measure the frequencies of acoustic 

modes of very small individual virus particles for the purpose of a fundamental understanding of 

their biophysics, diagnostics, or targeted destruction of the contagion. The advantage of the technique 

used here to determine the vibrational frequencies is that individual, optically trapped particles 

can be probed, and the frequency regime in the GHz is accessible. Prior to the development of the 

EAR technique [9,10,22], opto-mechanical methods for measuring mechanical vibrations were limited 

to a range of frequencies above 100 GHz for the case of traditional Raman scattering [42,53], and 

sub-gigahertz for cavity resonator-based approaches [54]. This left a gap of the important GHz range, 

where characteristic frequencies of structures of nanometer size scale should be found, according 

to elastic theory [37–42,55–58]. Viruses are of nanometer size scale and, thus, predicted to have 

vibrational modes in the GHz frequency range. Brillouin scattering can probe the GHz frequency 

range and, indeed, some Brillouin studies were done on viruses [43,46,48,59,60]; however, the peaks 

were difficult to observe possibly due to damping by water or core–shell interactions, as discussed 

in those works. Moreover, unlike these other opto-mechanical measurement methods, the EAR 

technique provides a high resolution of vibrational frequencies of individual nanometer-scale particles 

which are confined by optical trapping, as opposed to measuring ensembles of particles in the case of 

Raman and Brillouin scattering studies. This technique also has the advantage of directly measuring 

low-wavenumber Raman active modes of single trapped particles, while avoiding the issue of Rayleigh 

scatter overwhelming the signal near the zero-loss line, as is the case for traditional elastic light 

scattering spectroscopy. 

Previous work using the extraordinary acoustic Raman (EAR) technique investigated small 

proteins including DNA and polystyrene nanospheres [9–11,22], whereas here we report of the study of 

a virus using the technique, since the vibrational frequencies of viruses were of interest to researchers 

for some time [35,37,38,40–48,60–67]. The EAR technique involves the application of two lasers. Both 

lasers are focused on an aperture, forming an aperture-assisted laser tweezer, in which a small particle 

is trapped. The interference of the two lasers at slightly different wavelengths creates a “beating” 

oscillation in the electric field which then causes a stretching force on the trapped particle through 
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electrostriction. The frequency of this oscillation is controlled by the difference in wavelength of the 

two lasers. The wavelength of one laser is held fixed, while the other is swept through a wavelength 

range differing from the fixed-wavelength laser by sub-Angstrom to nanometer values, corresponding 

to beat frequencies in the GHz range. When the frequency of the beating oscillation produced by the 

interfering lasers matches the frequency of an acoustic mode of a trapped particle, there is stronger 

interaction of the electric field with the structure, leading to an increase in the movement of the particle 

within the trap. The laser transmission through the aperture depends on the position and conformation 

of the particle within the aperture and, thus, an increase in movement of the particle is observable as 

an increase in the fluctuations of the transmission signal. It is this variation of fluctuations of laser 

transmission signal that is detected for the EAR measurement. 

The previous EAR studies of nanometer-scale particles found peak frequencies which matched well 

with predicted values from elastic theory. In this work, the bacteriophage PhiX174 was studied—chosen 

for its small size, low biological safety rating, and history of being extensively studied. It makes a 

good model system for icosahedral viruses, of which there are many [68–70], although the techniques 

used here could be extended to the study of viruses of other size and shape. The size and morphology 

of PhiX174 is well established from SEM studies and crystallography [71–74]. PhiX174 is a coliphage 

which infects Escherichia coli bacteria [75]. Detection of such viruses can indicate the presence of fecal 

matter in aquatic environments [76]. 

2. Materials and Methods 

2.1. Optical Trapping Set-Up 

A modified Thorlabs OTKB Modular Optical Tweezers System was used for the optical trapping 

experiments (Figure ??a). Two Thorlabs DBR852P lasers were each passed through an optical isolator to 

prevent back-reflections from the microscope set-up and feedback from the other laser. The output laser 

light from the optical isolators was then introduced to the set-up via a 50/50 fiber coupler, one output of 

which was connected to a fiber launcher at the input of the microscope cage set-up. The other output of 

the 50/50 fiber coupler was sent to an optical spectrum analyzer in order to determine the wavelengths 

of the lasers for the interference beat frequency computation. The combined laser light is focused 

down onto a single DNH aperture via the 100× microscope objective, and the transmission is collected 

and collimated via the 10× objective. This transmission light is measured by an avalanche photodiode 

(APD), after first being attenuated by an optical density filter as required to bring the intensity level 

down to the measurable range of the APD. 

 

 
Figure 1. (a) Experimental set-up—(L1) tunable laser, (L2) fixed laser, (F1 and F2) optical fibers, (OI1 

and OI2) optical isolators, (50/50) fiber coupler, (FL) fiber launcher, (SA) spectrum analyzer, (M) mirror, 
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(HWP) half wave plate, (BE) beam expander, (DC) dichroic mirror, (CCD) charge-coupled device camera, 

(10× and 100× MO) microscope objectives, (LED) white light source, (OD) optical density filter, (APD) 

avalanche photo diode detector, (DAM) data acquisition module, (PC) personal computer. (b) Focused 

ion beam (FIB) image of the double nanohole (DNH) aperture with schematic of PhiX174 inserted. 

2.2. Sample Preparation 

The DNH aperture structures were milled into a 100-nm gold slide using a focused ion beam 

(FIB), with a distance of 40 nm between the points where the circles meet (Figure ??b). An adhesive 

slide spacer (Grace Bio-labs GBL654002) was affixed to the gold slide, and 10 µL of fluid containing 

the nanoparticles to be studied was dropped into the gap in the spacer. A glass cover slide was then 

affixed on top of the slide spacer. The sample was placed with the cover slide face down into the optical 

trapping set-up, with a small amount of immersion oil between the slide and the 100× objective, used 

to both focus the laser down onto the DNH apertures and image a white-light transmission through 

the aperture and the back-reflected laser spot via the charge-coupled device (CCD). 

2.3. Sizing 

Trapping experiments were performed on two sizes of commercial polystyrene spheres (Thermo 

Fisher Scientific Nanosphere 22 ± 2 nm and 31 ± 3 nm) and PhiX174 coliphage virus sample (Carolina 

124425 at 1010 plaque-forming units/mL). Virus sample was purified via filtration (VWR International 

0.2-µm cellulose acetate sterile syringe filter) and centrifuged at an estimated 30,000× g [77] for 15 min, 

before the supernatant was removed. For full details of the sizing technique, see past studies [3,23,27]. 

Each type of sample was trapped multiple times, and autocorrelation of the transmission signal after 

trapping was calculated. The characteristic time, τ2, was extracted by fitting the autocorrelation curve 

to a double exponential. For this analysis, the particles are taken to be spherical. Since the radius of the 

particle is comparable to half the distance between two walls of the aperture in the trapping region, 

only the first-order terms are taken to calculate the Stokes drag coefficient via Faxen’s Law. This leads 

to a simple linear dependence between Stokes drag coefficient and the particle radius. This implies 

that the time constant, τ2, is directly proportional to the radius of trapped spherical particles as well. 

For each type of sample, the average of the computed τ2 value was taken over the multiple trapping 

events. Finally, this averaged τ2 of was plotted against particle size, and fit to a line. 

2.4. EAR 

The two lasers, each with a power of 10 mW as measured at the fiber launcher input to the trapping 

set-up, were turned on to trap the particles. The two lasers were tuned to the same wavelength of 

853.08 nm during trapping, so that any beating due to interference would be of low frequency so 

as not to disturb the trapping process. Virus and polystyrene spheres were each trapped multiple 

times across many days. After trapping a particle, one laser was held fixed at 853.084 nm wavelength, 

while the other was tuned over a range of 853.273 to 853.084 nm, by varying the temperature via the 

controller, with an automated Matlab process. Each step was 0.01 K, corresponding to a ~0.001-nm 

wavelength change, as measured by the optical spectrum analyzer. For each wavelength step, the 

signal of the APD was accumulated for 15 s at 5 kHz acquisition frequency via a (Labjack U3-LV) data 

acquisition module. The normalized standard deviation of the APD signal was computed for each 

wavelength step. This measure of noise level increases as the beat frequency of the interfering lasers 

approaches the characteristic frequency of the trapped particle, which shows up as a peak in the noise 

level of the signal at the resonance value. 

As a simple model to predict the resonance frequencies of PhiX174, Lamb’s theory [55–58] was 

used. The icosahedral geometry of the virus studied in this work, PhiX174, can be simplified further 

by taking it to be a sphere. Despite much discussion and study on the elastic properties of viruses 

in existing literature, the wave speeds of viruses are generally not well established. Consistent with 

best estimates from previous works [43,44,47], for PhiX174, the longitudinal wave speed and Poisson’s 
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ratio were here taken to be ~1800 m/s and ~0.3 (corresponding to a transverse wave speed of 900 m/s), 

respectively. Using these values, the frequencies of the L0 mode were calculated to be 30 GHz. 

3. Results 

Polystyrene nanospheres and PhiX174 bacteriophage were separately optically trapped, all in the 

same DNH aperture in a gold film. Figure 2a shows the laser transmission signal as measured at the 

APD during a trapping event, with a characteristic jump in voltage, as well as an increase in the noise 

level. The autocorrelation of the signal after the trapping event was computed and fitted to a double 

exponential to extract the characteristic time, as shown in Figure 2b. The averaged characteristic time 

for each of the sample types is plotted against the known radius of the particles in Figure 2c, showing a 

good linear fit. This justifies the assumptions used in the Stokes coefficient calculation, i.e., spherical 

particles, far from the aperture walls. 

 

Figure 2. Sizing of particles via autocorrelation analysis: (a) a typical signal of a trap event; (b) 

autocorrelation of the signal after trapping, with double-exponential fit curve to extract the time 

constant, τ2; (c) a linear fit of the values of the time constant obtained from the autocorrelation curve 

fit, τ2 vs. particle diameter for the three particle sizes; (d) eight measurements of the extraordinary 

acoustic Raman (EAR) signal of PhiX174 virus, along with the averaged curve in red, showing a peak 

at 32 GHz. 

 

For the EAR study, polystyrene spheres were used as a control, with results matching previous 

EAR studies [9–11,22]. We also applied this technique to another bacteriophage, MS2, but it is not 

reported here. For each sample type, consistent peaks were observed across multiple trapping events. 

The EAR spectrum of the PhiX174 bacteriophage from eight separate measurements taken over two 

days is shown in Figure 2d, with a peak at 32 GHz. This differs slightly from the predicted value from 

elastic theory of 30 GHz. This difference may be partly attributable to the simplification in the model 

of the icosahedral geometry to that of a sphere or to the estimation of values of the wave speeds in the 

virus structure. 

4. Discussion 

It is well established that optical trapping enables the performance of experiments on single 

nanometer-scale particles. While the possibility to optically trap large viruses existed for decades, 

trapping with the aid of DNH apertures of one of the smallest viruses yet reported was demonstrated 

here. We showed the feasibility of identifying the virus in question, by determining the size of 

the particle, as well as experimentally measuring the signature acoustic modes. Such identification 

experiments, along with others such as standard Raman spectroscopy [78–81], could be useful for 

diagnostic purposes or for virus particle sorting. 
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The sizing technique, which models the optical trap as an overdamped harmonic oscillator, relies 

on some simplifying assumptions, i.e., that the particle is spherical, and that the particle radius is 

small compared to the distance between the aperture walls. PhiX174 has an icosahedral geometry, 

which is nearly spherical, with an established diameter of 25 nm, while the distance between aperture 

walls is 40 nm; thus, these assumptions are reasonable. Moreover, when the radius of a trapped 

PhiX174 particle along with those of two polystyrene sphere sizing standards was plotted against the 

characteristic times extracted from the experimental data, a good linear fit was found, which seems to 

justify those assumptions. It also helps to give confidence that the trapped particles were the expected 

ones, instead of some contaminant, which is always a possibility when it comes to trapping nanometer 

scale particles in liquids. 

One potential concern could be the effect of temperature on the optical experiments. Temperature 

could affect the physical attributes of the material being measured, such as acoustic properties or 

conformation of the structures, as well as affecting the measurement system itself; for example, 

transmission of the laser through the DNH aperture is likely temperature-dependent. The sample 

was not actively cooled; however, DNH apertures were in a gold substrate with a large surface area, 

which should transmit heat away from the sample area inside the DNH aperture, at the focus of the 

lasers. While it would be difficult to measure the local temperature at the sample, which is held within 

the focus of the lasers, several steps were taken to minimize the impact of unwanted temperature 

effects. Firstly, the input lasers were actively temperature- and current-controlled, and the output 

signal was found to vary in intensity by less than 5%, both when measured before the sample and 

when passing through the DNH apertures before a trapping event. For the EAR experiments, after 

varying the wavelength by each wavelength step of ~0.001 nm, for each step, a wait time of 5 s was 

given to allow the system to stabilize before beginning data acquisition. In addition, any short-term 

fluctuations in signal due to temperature variation would be averaged out over the measurement 

time of 15 s per step. Moreover, the full frequency range was swept multiple times for each sample 

type, giving consistent results for each scan as seen in Figure 2d, which is a good indication that 

any potential long-term temperature drift did not introduce any variation in the measurements. The 

EAR measurement actually directly measures fluctuations of the laser transmission signal, which 

are a manifestation of localized heating effects of the interfering lasers coupling with the sample 

material. No peaks or signal drift were observed in measurements of background noise levels when 

EAR measurements were taken for the system with nothing trapped—just a DNH aperture with 

water. If there were temperature-induced artefacts from heating of the DNH apertures, they would be 

expected to be observed in these background measurements as well. 

It is noted that recent works investigated temperature effects in this geometry and found that 

the temperature increase is of the order of 1–10 K due to heating with the laser [82,83]. In some cases, 

this can be beneficial because it elevates the room temperature experiment to physiological conditions. 

In the past, we attempted to control the temperature by having a heater and thermocouple on the stage; 

however, this led to optical drift and, thus, we did not attempt that approach in this work. 

Much investigation has gone into determining elastic properties of viruses and, in particular, 

the vibrational frequencies of their structures in past works. Here, an easy-to-implement technique 

was presented to directly and unambiguously measure such frequencies for individual viral particles 

experimentally. This is in contrast to optical scattering methods for probing acoustic modes, such as 

Brillouin scattering which is generally performed on ensembles of particles. In addition, since the 

EAR technique does not rely on detection of angular dependence of forward-scattered laser light, 

the technique does not suffer from a frequency limit of a scattering angle around the zero-loss laser 

line. The vibrational frequency measured in this work for PhiX174 was found to be 32 GHz, which can 

be associated with the L0 mode predicted from elastic theory at 30 GHz. This predicted value relies 

on best estimates from previous works of longitudinal and transverse wave speeds of 1800 m/s and 

900 m/s, respectively. 
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Excitation of viruses at their characteristic frequencies, once experimentally determined, may 

be useful for the selective destruction of the virus in question, as proposed in other studies [49–52]. 

This is a good direction for future work, as it would be a simple matter to excite the virus with the 

same interfering laser wavelengths, but at higher powers such that the resonant excitation might be 

sufficient to disrupt the structure without affecting surrounding material. 
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