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Abstract: Software systems are now ubiquitous and are used every day for automation purposes in 

personal and enterprise applications; they are also essential to many safety-critical and mission-critical 

systems, e.g., air traffic control systems, autonomous cars, and Supervisory Control And Data 

Acquisition (SCADA) systems. With the availability of massive storage capabilities, high speed 

Internet, and the advent of Internet of Things devices, modern software systems are growing in both 

size and complexity. Maintaining a high quality of such complex systems while manually keeping 

the error rate at a minimum is a challenge. This paper proposed a heterogeneous defect prediction 

method considering class extreme imbalance problem in real software datasets. In the first stage, 

Sampling with the Majority method (SWIM) based on Mahalanobis Distance is used to balance the 

dataset to reduce the influence of minority samples in defect data. Due to the negative impact of 

uncorrelated features on the classification algorithm, the second stage uses ensemble learning and 

joint similarity measurement to select the most relevant and representative features between the 

source project and the target project. The third phase realizes the transfer learning from the source 

project to the target project in the Grassmann manifold space. Our experiments, conducted using nine 

projects of three public domain software defect libraries and compared with four existing advanced 

methods to verify the effectiveness of the proposed method in this paper. The experimental results 

indicate that the proposed method is more accurate in terms of Area under curve (AUC). 
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1. Introduction 

Software defect prediction (SDP) is important to identify defects in the early phases of software 

development life cycle [1,2]. This early identification, and thereby removal of software defects, is crucial 

to yield a cost-effective and good quality software product. It usually focuses on estimating the defect 

proneness of software modules, and helps software practitioners allocate limited testing resources to 

those parts which are most likely to contain defects. This effort is particularly useful when the whole 

software system is too large to be tested exhaustively or the project budget is limited. 

Software defect datasets are typically characterized by an imbalanced class distribution where 

the defective samples are fewer than the non-defective samples [3]. The quality of data is usually 

the most critical factor to determine the performance of a classification model. The class imbalance 

of defect datasets will seriously affect the prediction performance, especially for extreme imbalance 

data classification. The prediction model will pay more attention to the non-defect samples, which 

makes the prediction model more inclined to the non-defect samples, and ignores the cost of error 
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identification of the defective samples. Although the misclassification of defective samples does not 

significantly reduce the global classification accuracy, the accuracy of defective samples will decline, 

which is inconsistent with the goal of software defect prediction. Zhou et al. proposed a model 

which combined attribute selection, sampling technologies and ensemble algorithm to solve the class 

imbalance problem [4]. Huda et al. introduced a new mixed sampling strategy to generate more pseudo 

samples from defective classes, and combined random oversampling, Majority Weighted Minority 

Oversampling Technique, and Fuzzy-Based Feature-Instance Recovery to construct an integrated 

classifier [5]. It was proven that the prediction performance of Heterogeneous Defect Prediction (HDP) 

can be improved by balancing defect dataset. 

At present, the research on SDP is mainly based on the defect prediction of homogeneous projects, 

which uses historical data of other projects to construct prediction model. The historical data have 

the same metrics as the target project, but they are distributed differently. Sufficient historical data 

are provided for the project to be predicted. However, the programming languages and application 

fields of different projects are often different, and the corresponding features and distribution are 

various. It is very difficult to construct a model with homogeneous defect prediction method to 

have good prediction performance. Therefore, how to use the historical data of other heterogeneous 

projects to establish a prediction model and predict whether the target project module contains defects, 

is a research hotspot in the field of software defect prediction. 

HDP uses the data of other projects with different measurement standards to realize the defect 

tendency prediction of the target project. However, due to the different measurement standards and 

data differences between projects, it cannot be directly used for model construction. Turhan et al. 

increased the data similarity between different projects by taking advantage of the common features of 

source and target projects [6]. Nam and Kim et al. used feature selection and feature matching to build 

the predictor with heterogeneous projects [7]. Jing et al., who combined Unified Metric Representation 

(UMR) and Canonical Correlation Analysis (CCA), proposed CAA+ to make the distributions of source 

and target projects similar [8]. However, these methods have three limitations. Firstly, the discarded 

features may contain the discrimination information of constructing the classification model. Secondly, 

if the number of common features is less, there may not be enough useful information for accurate 

prediction. Thirdly, heterogeneous projects may not have common features. 

Researchers began to focus on the common potential space between the source project and the 

target project to settle a matter of great difference in features between heterogeneous projects. Li et al. 

mapped the source project and the target project to the high-dimensional kernel space, and reduced the 

difference of data distribution through kernel correlation alignment method [9]. Xu et al. embedded 

the data from the two domains into a comparable feature space with a low dimensional, measures the 

difference between the two mapped domains of data using the dictionaries learned from them with the 

dictionary learning technique [10]. Xu et al. used the spectrum embedding to map the source project 

and the target project from the high-dimensional space to the low-dimensional consistent space [11]. 

Transfer learning is introduced into HDP to reduce the problem of data difference, which no 

longer requires two projects have the same feature dimension and distribution. Transfer learning is 

an important branch of machine learning. Its goal is to learn knowledge from an existing domain to 

solve a different but related domain problem. There are three aspects different from traditional machine 

learning: (1) training and test data can be subject to different distribution. (2) Sufficient labeled data is 

not required. (3) The model can be transferred between different tasks. It can be used to construct an 

HDP model with good effect. 

However, not all the features can improve the transfer effect in the source project. Only the 

features contain important information and similar to the distribution of the target project, which are 

conducive to the construction of a good HDP model. The researchers focused on data processing 

before transfer learning. Yu et al. achieve feature transfer from the source project to the target project 

by designing a feature matching algorithm to convert the heterogeneous features into the matched 

features according to the ‘distance’ of different distributing curves [12]. Ma et al. proposed Kernel 
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Canonical Correlation Analysis based transfer learning algorithm to improve the adaptive ability of 

prediction model [13]. Wen et al. adopted feature selection and source selection strategies, combined 

with Transfer Component Analysis to get better prediction performance [14]. Chen et al. proposed 

a new heterogeneous transfer learning method based on neural network [15]. The instances were 

transferred to generate quasi real instances. The high credibility quasi real instances were selected 

to expand the target project data and construct the prediction model. Tong et al. found a series of 

potential common kernel feature subspaces of source project and target project by combining kernel 

spectral embedding, transfer learning, and ensemble learning [16]. The above approaches fully proved 

that the combination of feature selection and feature transferring can improve the performance of 

an HDP model. 

In this paper, the main idea of the proposed approach is to generate samples from the density 

curve and balance the dataset. It not only reduces the influence of imbalanced data on the classification 

surface, but also avoids the generation of new samples in the dense area of non-defect samples. 

Ensemble learning selects some data and establishes multiple Classification and Regression Trees 

(CART) [17]. The dimensionality reduction of nonlinear data in manifold space can well maintain 

the complete information of complex structure high-dimensional data, and the inverse mapping 

of low-dimensional data can also maintain most of the data information [18]. The distortion and 

deformation of the local feature neighborhood can be reduced by transfer learning in the manifold 

space. The proposed approach is called Grassmann manifold optimal transfer defect prediction 

(GMOTDP). A new sample is generated according to the relative density curve of the defective samples 

of the source project, which can balance the dataset. The optimal subset of source project is constructed 

by combining with the importance ordering. Joint similarity measurement is used to construct the 

optimal subset of the target project. Transfer learning in the manifold space is realized by using the 

optimal subsets of source and target projects. Its main contributions are as follows: 

1. A new sample data is generated to balance source project. According to the hyperellipticity 

density curve of the defective samples. 

2. Use ensemble learning and joint similarity measure to obtain the optimal subsets of source project 

and target project, respectively. 

3. Map the non-linear data to Grassmann manifold space, and geodesic flow kernel (GFK) is used to 

transfer the source project to the same distribution space of the target project. 

2. Proposed Framework 

The proposed approach framework of GMOTDP is shown in Figure 1. The algorithm 

implementation includes the following three parts. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The overall architecture of GMOTDP. 

(1) In the oversampling phase, Sampling With the Majority (SWIM) is used to generate new 

samples along the hyperelliptically dense contour of each defective sample, which is helpful to 
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overcome the limitation of SMOTE, that is, to generate samples outside the convex hull formed by 

defective samples, and prevents them from being generated in higher probability areas of the non-defect 

class. Imbalanced source project {S,Y} are oversampled to obtain a balanced dataset {S‘,Y‘}. 

(2) In the feature selection phase, the irrelevant features of the source project are firstly removed. 

The importance of each feature is quantified by using Classification and Regression Tree (CART). 

The ensemble learning is adopted. The gradient boosting algorithm is used to reduce the loss of 

CART, and a new tree structure model is generated to ensure the reliability of the final decision. 

The weighted average of different features in all trees determines the optimal subset of source project 

to be transferred. For the objective function, the complexity of the tree model is added to the regular 

term to avoid over fitting. The loss function is expanded by Taylor expansion, and the first derivative 

and the second derivative are used to quickly optimize the objective. Get the optimal subset of the 

source project through integration learning. Within a specified number of times, the features of the 

target project are randomly sorted. By calculating the Euclidean distance of the optimal subset of 

source projects to determine the similarity, the optimal subset C of the target project to be transferred is 

jointly determined. 

(3) In the feature transferring phase, the traditional Euclidean space measurement is difficult to be 

used in the real-world nonlinear data; thus, it is necessary to introduce new hypothesis to the data 

distribution. Manifolds are locally Euclidean spaces, which can find low-dimensional embeddings 

hidden in high-dimensional data. From the perspective of the topologic, it is locally linear and 

homeomorphic with low dimensional Euclidean space topology. From the perspective of differential 

geometry, any tiny part is regarded as Euclidean space. All samples are mapped to the Grassmann 

manifold. The source project is mapped to the low dimensional common space with the target project 

GC by local neighborhood similarity, and the source project {GB,Y} data similar to the distribution of 

the target project is obtained with Geodesic Flow Kernel (GFK). Source and target project datasets are 

inversely mapped. The transformed source project data are trained, and the target project prediction is 

realized by using Logistic Regression (LR). 

2.1. Sampling with the Majority 

Generating the samples outside the convex hull formed by the defective samples and preventing 

them from generating in the dense area of the non-defect samples, SWIM makes full use of the relative 

distribution information. The Mahalanobis distance (MD) of each given minority class instance 

corresponds with a hyperelliptical density contour around the majority class, and the minority class is 

inflated by generating synthetic samples along these contours. New samples are generated along these 

density curves to expand the defective class. The MD of a sample x from the mean µ is calculated by 

the inverse matrix Σ
–1 

of covariance Σ as: 

MD(x, µ) = (x – µ)TΣ
–1

(x – µ) (1) 

Centering the data simplifies the calculation of the distances; this will be evident in a following 

step, when we generate a new sample point. The mean vector µa of the defect free samples is calculated, 

and the defect free samples A and B are centralized, respectively. 

A = A – µa (2) 

B = B – µa (3) 

The MD is equivalent to the Euclidean distance in the whitened space of a distribution. Thus, 

we simplify the calculations for generating samples by whitening the space. Let Σ denote the covariance 

matrix of A, we whiten the centered minority class as: 

Bw = (B – µa)Σ– 2 (4) 
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Select a defective sample as the reference datum randomly, generate samples that are at the same 

Euclidean distance from the mean of the defective class. For each feature f in Bw, we find its mean 

µ f and standard deviation σ f . The bounds of each feature are a random number between µ f and l f . 

α controls the number of standard deviations we want the bounds to be. An upper and lower bound 

on its value, µ f and l f , as follows: 

µ f = µ f + ασf (5) 

l f = µ f – ασf (6) 

Center the data, this implies that the new sample will have the same Euclidean norm as the 

defective sample. We transform z as: 

znorm = z 
||x||2 

||S||2 
(7) 

Transform each new sample to the original space, where the new sample znew will be in the same 

density curve as the reference datum: 

 

znew = 
 

Σ– 
1
 –1

z 

 

 

norm 

 

(8) 

This process can be repeated t times, where t is the desired number of samples to be generated 

based on the reference datum. SWIM is summarized as in Algorithm 1. 
 

Algorithm 1. Sampling with the Majority 
 

Input: imbalanced and labeled source dataset S, Sampling rate α. 

Output: balanced and labeled source dataset Snew. 

Method: 

1. N = number of samples (undefect class A – defected class B). 

2. Compute µa and covariance matrix Σ with. 

3. Whiten B as Bw = (B – µa )Σ– 2 , compute mean µf and standard deviation σf for each feature f . 

4. for i = 1 to t, t = α × N do 

5. select a sample x randomly from B. 

6. Generate new sample z, each feature z f is
 
µf + ασf

 
≤ z f ≤

 
µf – ασf

 
. 

7. transform s back into original space, znew = 

8. end for 

9. return Snew 

Σ– 
1 –1 

z ||x||2 

||S||2 

 
 

 

In order to verify the effectiveness of SWIM and produce representative results, an imbalanced 

training set with 10 minority samples and 88 majority samples and a balanced test set with 300 samples 

are created. The demonstration is presented in Figure 2. The left figure shows the results of 

oversampling using SWIM with an imbalanced dataset. The right figure shows the classification 

results of the support vector machine without oversampling. The majority class training samples 

are shown as red squares with black outlines, and the corresponding test samples are shown as red 

circles. The minority class training samples are shown as blue squares with white outlines, and the 

corresponding test samples are shown as blue circles. The new samples by SWIM are shown as cyan 

squares with white outlines. It can be seen from the Figure 1 that the samples generated by SWIM are 

spread along the density curve corresponding of the minority data from the majority class. From the 

decision surfaces generated by the two classifiers (represented by the shading in the plot), it can be 

seen that using the information in majority class to generate samples can lead more representative 

decision surface, which obtains better classification performance. 
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(a) (b) 

Figure 2. (a) Shows the binary support vector classifier induced over the imbalanced training set; 

(b) Shows the illustration of classifier produced by using SWIM. 

In order to prove the effectiveness of this method, the classification results of the training set 

without sampling and SWIM are calculated. We divided a defect dataset into a training set and test set 

with a ratio of 7:3, which is classified by SVM. The average results of 10 times are shown in Table 1. 

It shows that SWIM has a significant advantage when the relative and absolute imbalance is very high. 

Table 1. AUC obtained by using SVM without sampling (Baseline), and with SWIM. 
 

Project Baseline SWIM 

PC3 0.7792 0.8293 
PC4 0.7398 0.8231 

MW1 0.8229 0.8678 
EQ 0.7948 0.8730 
JDT 0.9219 0.9633 
LC 0.8011 0.8658 

AR3 0.8472 0.8666 
AR4 0.9587 0.9892 

AR5 0.8752 0.9375 

 

2.2. Feature Selection 

This phase selects the optimal subset of the source and target projects for feature transfer. Quantify 

the importance of each feature to select features by using the tree model. In the process of CART 

construction, select the feature with the maximum gain to segment to the maximum depth, and achieve 

the minimum cost of CART segmentation. When constructing the next tree using the ensemble learning, 

the objective function adds complexity. The first and the second derivatives are used to reduce the loss 

of cart, minimize the objective function and ensure the reliability of the final decision. All features of 

all trees are weighted and averaged to determine their importance. 

During the construction of cart, the idea of minimizing the objective function is as follows: 

Lk = 
, 

l(yi, yˆi) + 
, 

Ω(pk) (9) 
i k 

Ω(p) = γT + 
1 
λ||ω||2 (10) 

Here, l is a differentiable convex loss function, which is used to measure the difference between 

the prediction yˆi and the target yi. The second term Ω penalizes the complexity of the model, which 

helps to smooth the final learning weights to avoid over-fitting. T is the number of leaf nodes, ||ω|| is 
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j= j 2 j j 

j 

i = 1 

 

the magnitude of leaf node vector, γ represents the difficulty of sharding a node, and λ represents the 

L2 regularization coefficient. 

 

Lk = 

n 

l yi, yˆi(k–1) + pk(xi) + Ω(pk) (11) 
i 

pk(xi) = ωq(xi ) (12) 

where yˆi(k) is the prediction of the i-th sample at the k-th iteration. q(xi) is the structure function of 

each tree that maps an example to the corresponding leaf index. The objective function greedily adds 

pk(xi). Each pk(xi) corresponds to an independent tree structure q(xi) and leaf weights w. 
n 

Lk = 
, 

l
 
yi, yˆi k 1

  
+ gipk + 

1 
hip2

 

+ Ω(pk) (13) 

Second-Order approximation optimizes the target quickly, where gi = ∂yˆi(k–1) 
l
 
yi, yˆi(k–1)

 
and 

hi = ∂2 
y î(k–1) 

l
 
yi, yˆi(k–1)

 
are the first and the second order gradient statistics of the loss function, and 

removes the constant term of the objective function. 

L  = 
,n 

l
 
y , yˆ + p

 
+ Ω(p ) 

= 
,n 

l
 
y , yˆ + p

 
+ γT + 1 λ 

,T 
w2 (14) 

= 
,T 

1

 
,

i∈I gi

 

ωj + 1
 
,

i∈I hi + λ
 

ω2

 

+ γT 

The weight wj of each leaf in each tree is obtained, which is used to calculate the feature importance: 
 

w =  
i∈Ij 

gi 

i∈Ij 
hi + λ 

 

(15) 

Las Vegas is a typical randomization method, namely, one of probability algorithms. It has the 

characteristics of probability algorithm, which allows the algorithm to randomly select the next step 

in the process of execution. In many cases, when the algorithm is faced with a choice in the process 

of execution, the randomness choice spends less time than the optimal choice, thus, the probability 

algorithm can greatly reduce the complexity of the algorithm. In this paper, Las Vegas is used to 

randomly sort the features of the target project, and calculate the Euclidean distance with the source 

project to measure the similarity. In a certain number of times, the subset with the highest distribution 

similarity is selected as the optimal subset of the target project for subsequent transfer learning. Feature 

selection is summarized as in Algorithm 2. 
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i i(k–1) k k 

k 
i = 1 

i k 2 i k k 

 
 

Algorithm 2. Feature Selection 

1. Input: feature f (i) ∈ Snew, label y(i) ∈ Snew, i = 1 · · · n, the number and depth of CART K, D. 

imbalanced and unlabeled source dataset XT , random number R 

Output: Similar dataset XS–sim, XT–sim 

Method: 

 

2. for k = 1 to K, do 

3. for d = 1 to D, do 

4. sampling(Snew × 0.4) 

5. fi→(gain( fi )) 

6. select maxGain( fi ) to split 

7. end for 

8. prediction label: yˆi, complex index: pk, feature weight, ω( fi ) 
n   

9. L = 
, 

l y , yˆ + p + Ω(p ) 

10. second-order approximation L = 
, h

g p + 1 h p2
i 
+ Ω(p ) 

11. gi = ∂yˆi k 1 l
 
yi, yˆi(k–1)

 
, hi = ∂2 l

 
yi, yˆi(k–1)

 
. 

12. end for 

( – ) yˆi(k–1) 

13. avg(ωk ( fi ), wj (k))→sort( fi)→Simp 

14. for r = 1 to R, do 

15. shuffle(XT , col) 

16. select dataset XT–rand, col(XT–rand) = col(XS–imp) 

17. euclidean(XT–rand, XS–imp) 

18. end for 

19. XS–sim, XT–sim by min(euclidean(XT–rand, XS–imp)) 

 

2.3. Transfer Learning in Manifold Space 

Manifold is homeomorphic spaces in local and Euclidean spaces. It uses Euclidean distance to 

calculate the distance, which overcomes the feature distortion of transfer learning in original space. 

The Grassmann manifold can take the original d-dimensional subspace as the basic element to help 

learning classifier. It usually has an effective numerical form in feature transformation, which can be 

very efficient representation and solution in the transfer learning problem. In addition, the transfer of 

source project to target project, or the transfer of source and target projects to a common space are 

two main methods of feature-based transfer learning. Li et al. found that the performance of the 

transfer of source project to target project is better than the latter [19]. In this paper, the optimal subset 

of source and target projects are transformed into the Grassmann manifold. Geodesic Flow Kernel 

(GFK) method is used to construct geodesic flow to make the source domain close to the target domain. 

It integrates the space function of the manifold where these two points are located of the source project 

with the same distribution as the target project is obtained. 

As shown in the Figure 3, GFK tries to embed the D × d dimension subspace Ps, PT ∈ RD×d after 

dimensionless reduction of the source domain and target domain into the manifold G. φ(0) is the source 

domain representation of manifold G, φ(1) is the target domain representation of manifold G, and 

the geodesic flow between φ(0) and φ(1) is equivalent to transforming the original feature space into 

an infinite dimension space, reducing the drift phenomenon between domains. The parameterization 
is shown as follows: 

Φ : t ∈ [0, 1] → Φ : t ∈ G(d, D) 

PS = Φ(0), PT = Φ(1) 
(16) 
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Z , Z  
= x Gx   

    

 

Φ(t) is represented as follows, where U1, U2 are orthogonal matrices obtained by SVD. 

Φ(t) = PSU1Γ(t) – RSU2Σ(t) (17) 

PTPT = U1Γ(t)VT, RTPT = –U2Σ(t)VT (18) 

z∞ = Φ(0)Tx, . . . , Φ(t)Tx, . . . , Φ(1)Tx is the feature of manifold space, the inner product of 

transformed features gives rise to positive semidefinite geodesic flow kernel: 

∞  ∞ 

, 1 
T T T T 

(zi , zj ) = (Φ(t) 
0 

xi) (Φ(t) xj)dt = xi Gxj (19) 

Thus, the features in the original space can be transformed into the Grassmann manifold with 

z = 
,
Gx. G can be effectively calculated by singular value decomposition. 

" 
Λ1 Λ2 

#" 
UTPT # 

Λ2 Λ3 UTRT 
2  S 

Logistic regression is used as classifier to train the source project with the same distribution as the 

target project, and use the model to distinguish the defect type of the target item module. 

 

 

z = (0)T x,.,(t)T x,.,(1)T x 
 

 

 

Figure 3. Geodesic Flow Kernel. 

3. Experimental Results and Analysis 

3.1. Datasets Description 

The experimental data are from three open databases in the field of software defect prediction: 

NASA [20], AEEEM [21], SOFTLAB [22]. Table 1 lists the details of the datasets used in the experiment. 

Each dataset represents a software system or subsystem, including the static code indicators and 

corresponding fault data of each component module. Although these three databases have different 

number of features, some databases have common features. Table 2 shows the situation of common 

features between databases. NASA comes from NASA’s space system related software, which is 

written in C language. Its features include the number of lines of code, software complexity, and 

software readability. AEEEM is collected by D’Ambros and written in Java language. Its features 

include change entropy measurement and source code measurement. SOFTLAB comes from Turkish 

software company and is written in C language. Both SOFTLAB and NASA used in the experiments are 

obtained from PROMISE [22], and there are 28 common features between them. There are redundant 

samples and features in NASA, and we choose the clean-up version NASA MDP. Projects of MW1 and 

LC, and so on, are all extreme imbalance datasets. 

G(d,D) 

Target 

Source 

G = [PSU1 RSU2] (20) 



 

American Journal of Applied Sciences Volume 15, Issue 1, 2025 

 

Table 2. Details of projects used in the comparison experiments. 
 

Company Project Language Description Metrics Instance Defective (%) 
 

PC3 C 

NASA  

PC4 C 

MW1 C 

Orbiting Satellite 

Orbiting Satellite 

 

 

 

 

 

 

Dishwasher 

Refrigerator 

3.2. Experimental Results 

Experiments used the Bob under Linux as the backend. Python the multi-paradigm programming 
language with rich data science packages has been selected. The information of hardware is CPU: 

Intel® Core™ i7-9750H, Video card: NVIDIA Geforce RTX 2060. 

In order to investigate the performance of the proposed algorithm in this paper, GMOTDP is 

compared with the existing state-of-the-art defect prediction methods, such as TCA+ [23], CCA+ [8], 

KCAA+ [13], and KSETE [16]. TCA+ and CCA+ are benchmark comparison methods for heterogeneous 

defect prediction. KCAA+ and KSETE are new heterogeneous defect prediction methods in 2017 

and 2019. All methods use logistic regression as the classifier. In the experiments, one project was 

selected as the target project, and the projects in different datasets were used as the source project 

for heterogeneous prediction. The area under the working characteristic curve (AUC) of the subjects 

was used as the evaluation index of the prediction model. The value of AUC ranged from 0 to 1, 

which is larger, the classification effect of the model is better. For example, six forecasting cases can 

be carried out for a given SOFTLAB database, when AR3 is selected as the target project. They are 

called PC3 ≥ AR3, PC4 ≥ AR3, MW1 ≥ AR3, EQ ≥ AR3, JDT ≥ AR3, LC ≥ AR3. Because GMOTDP 

involves randomness when dealing with class imbalance and feature selection, the average results 

of 50 repeated experiments were counted for each case to reduce the influence of randomness on the 

experimental results. 

The number of common features between projects of different companies is shown in Table 3. 

In this paper, two sets of experiments are designed to verify the predictive performance of GMOTDP, 

which is not affected by whether the source and target projects have common features or not. When 

there are common features between two projects, the projects of NASA and SOFTLAB are used as the 

source projects and the target projects, respectively, for comparison experiments. When two projects 

have not common features, the projects of AEEEM and SOFTLAB are used as the source projects and 

the target projects, respectively, for comparison experiments. 

Table 3. The number of common features between projects of different companies. 
 

Company A ∩ Company B NASA ∩ SOFTLAB AEEEM ∩ SOFTLAB NASA ∩ AEEEM 

Number 28 0 0 

 

Table 4 shows the AUC values of GMOTDP compared with the other four methods when the 

source and target projects have common features. We selected datasets from NASA and SOFTLAB 

as source and target projects, respectively. Figure 4 graphically displays Table 4 for a more intuitive 

display and comparison of the predicted results. It can be seen from Figure 4 and Table 4 that the 

 about Combustion  

 EQ Java OSGi Framework 61 324 129 (39.81%) 

AEEEM JDT Java IDE Development 61 997 206 (20.66%) 

 LC Java Text Search Engine Library 61 691 64 (9.26%) 

AR3 C 
Embedded Controller of The 

29 
SOFTLAB 

Washing Machine 
63 8 (12.7%) 

AR4 C 
Embedded Controller of The 

29 107 20 (18.69%) 

AR5 C 
Embedded Controller of The 

29 36 8 (22.22%) 

 

Flight Software for Each 
37 1077 134 (12.44%) 

Flight Software for Each 
37 1458 178 (12.21%) 

A Zero Gravity Experiment 
37 253 27 (10.67%) 
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performance of GMOTDP is better than other methods, and the AUC average value of the prediction 

results of the other four methods is improved by 0.1981, 0.2305, 0.1331, and 0.1106, respectively. It can 

be seen that the prediction effect of GMOTDP is better than the other four methods from the boxplot 

representation of Figure 5. 

Table 4. Mean AUC results for source and target projects with common features using different methods. 
 

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP 

 AR3 0.6399 0.6232 0.7689 0.7474 0.8297 
PC3 AR4 0.7151 0.6462 0.7389 0.7743 0.9014 

 AR5 0.6249 0.6692 0.7516 0.8242 0.9330 

 AR3 0.6920 0.6769 0.7310 0.7846 0.8079 

PC4 AR4 0.6930 0.6462 0.7371 0.7047 0.9252 
 AR5 0.7214 0.6492 0.7229 0.7728 0.8460 

 AR3 0.6696 0.6464 0.7089 0.6398 0.8170 

MW1 AR4 0.6860 0.6923 0.8259 0.7964 0.8682 
 AR5 0.6429 0.5462 0.6850 0.8286 0.9397 

mean  0.6761 0.6437 0.7411 0.7636 0.8742 

 

Figure 4. Results for source and target projects with common features using different methods. 
 

Figure 5. Boxplot for source and target projects with common features using different methods. 
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Table 5 shows the AUC values of GMOTDP compared with the other four methods when there 

are no common features between the source project and the target project. We selected datasets from 

AEEEM and SOFTLAB as source and target projects, respectively. In Figure 6, the results of Table 5 

are shown graphically, the various colored columns indicate the same as above. It can be seen from 

Table 5 and Figure 6, the mean value of GMOTDP is 0.8690, while the mean values of other methods 

are 0.5747, 0.6093, 0.6772, and 0.7352, respectively. The boxplot representation in Figure 7 shows that 

the prediction effect of GMOTDP is better than other methods. 

Table 5. Mean AUC results for source and target projects without common features using different methods. 
 

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP 

 AR3 0.5504 0.5846 0.7043 0.7129 0.8382 
EQ AR4 0.5559 0.6462 0.7784 0.7850 0.9145 

 AR5 0.5795 0.6923 0.6830 0.6654 0.9397 

 AR3 0.5625 0.5692 0.6572 0.6806 0.8326 
JDT AR4 0.5640 0.6462 0.7528 0.7469 0.9236 

 AR5 0.6429 0.5692 0.5931 0.7849 0.7515 

 AR3 0.5982 0.5846 0.7188 0.7294 0.8065 

LC AR4 0.5530 0.6077 0.5545 0.7367 0.9031 
 AR5 0.5661 0.6154 0.6524 0.7754 0.9115 

mean  0.5747 0.6093 0.6772 0.7352 0.8690 

 

Figure 6. Results for source and target projects without common features using different methods. 
 

Figure 7. Boxplot for source and target projects without common features using different methods. 
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When Tables 4 and 5 are compared, it can be seen that the prediction performance of GMOTDP is 

not affected by whether there are common features. TCA+, CCA+, and KCCA methods have different 

degrees of decrease in predictive performance between source and target projects without a common 

feature. The reason for this situation is that PCA is used to extract the principal components of source 

and target projects when constructing manifold space, and the reconstructed features can retain most 

of the relevant information characteristics. GMOTDP does not lose the important information related 

to defects in data processing, which ensures the effectiveness and universality. 

The non-parametric test does not assume that the population distribution must conform 

to the normal distribution. It can infer that the population distribution directly from samples. 

The Kruskal-Wallis test is carried out under significance level α = 0.05, and TCA+, CCA+, KCCA+, 

KSETE, and GMOTDP are compared in pairs. The null hypothesis for each row in Table 6 show that the 

Method 1 and Method 2 distributions are the same. In order to reveal which of these groups differ from 

each other, we conduct a post hoc test with the Holm-Bonferroni correction. We use SPSS software 

to obtain adjusted p-value, which is directly compared with 0.05, and the difference is considered 

statistically significant if it is less than 0.05. The last column of the Table 6 clearly shows that there is 

a significant difference between GMOTDP and TCA+, CCA+, and KCCA+, but there is no significant 

difference between GMOTDP and KSETE. 

Table 6. Kruskal-Wallis H and Holm-Bonferroni correction. 
 

Method 1 Method 2 p-Value Holm-Bonferroni Correction 

TCA+ CCA+ 0.949 1.000 
TCA+ KCCA+ 0.005 0.054 
TCA+ KSETE <0.001 0.001 
TCA+ GMOTDP <0.001 <0.001 
CCA+ KCCA+ 0.007 0.066 
CCA+ KSETE <0.001 0.001 
CCA+ GMOTDP <0.001 <0.001 

KCCA+ KSETE 0.238 1.000 
KCCA+ GMOTDP <0.001 0.001 

KSETE GMOTDP 0.006 0.064 

 
For the imbalanced datasets, G-mean was used to compare the performance of each prediction 

method again. G – mean = 
,
TNR × Recall, TNR and Recall denotes specificity and sensitivity of the 

classifier, respectively. G-mean comprehensive considers the classification performance of minority 
class and majority class. When the classification accuracy of minority class and majority class is closer, 

we can get the best G-mean value. It can be found from Tables 7 and 8 that the prediction effect of 

GMOTDP is better. 

Table 7. Mean G-mean results for source and target projects with common features using different methods. 
 

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP 

 AR3 0.5835 0.6618 0.7090 0.7129 0.7800 

PC3 AR4 0.5796 0.6208 0.6790 0.6924 0.7630 
 AR5 0.5909 0.6092 0.5909 0.7334 0.8018 

 AR3 0.5998 0.6196 0.7049 0.6882 0.7951 

PC4 AR4 0.5043 0.6167 0.6898 0.6764 0.7734 
 AR5 0.5797 0.5912 0.6008 0.7369 0.7823 

 AR3 0.5687 0.6366 0.6144 0.6939 0.7796 

MW1 AR4 0.5454 0.6466 0.6544 0.7206 0.8148 
 AR5 0.6891 0.6723 0.6009 0.7341 0.7622 

mean  0.5823 0.6305 0.6493 0.7099 0.7836 
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Table 8. Mean G-mean results for source and target projects without common features using 

different methods. 
 

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP 

 AR3 0.5977 0.6344 0.6593 0.6847 0.7922 
EQ AR4 0.5527 0.5890 0.6096 0.6836 0.7710 

 AR5 0.5345 0.6396 0.6793 0.7188 0.7662 

 AR3 0.5955 0.6207 0.6269 0.7358 0.8158 
JDT AR4 0.6736 0.6213 0.6096 0.7297 0.7766 

 AR5 0.5924 0.6065 0.6669 0.7306 0.7393 

 AR3 0.5797 0.6355 0.6519 0.7312 0.7834 
LC AR4 0.6145 0.6044 0.5929 0.7351 0.7710 

 AR5 0.5671 0.6421 0.6308 0.7275 0.7902 

mean  0.5897 0.6215 0.6363 0.7197 0.7784 

 

4. Conclusions 

This paper proposes a three-phase heterogeneous software prediction method-GMOTDP, which 

includes SWIM oversampling, feature selection and transfer learning. New minority samples are 

generated to balance the source project dataset based on Mahalanobis distance. CART-based ensemble 

learning is used to determine the optimal subset of source project. The joint similarity measure is 

used to obtain the optimal subset of the target project. According to the transfer of optimal subsets 

in manifold space, the source project with the same distribution as the target project are obtained, 

which reaches the condition of traditional classification and predicts the defect tendency of the target 

project module. 

A lot of experiments were designed to validate the propose scheme using nine projects of 

three public domain software defect datasets. Compared with several representative software defect 

prediction methods, the proposed GMOTDP has better prediction effect. AUC results show that our 

method performs better usually than other four methods. 

In the future, we will study how to combine other supervised learning methods with the sample 

level and algorithm level methods, and investigate the influence of extreme class imbalance in 

semi-supervised software defect predictor on more datasets. This is an interesting issue to be explored, 

which might shed light on the design of more powerful supervised learning algorithms. 
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