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Abstract: This paper proposes an evaluation index of wind turbine generator operating health 

based on the relationships with SCADA (Supervisory Control and Data Acquisition) data. First, the 

relationship among the data from a wind turbine SCADA system is thoroughly analyzed. Then, a time 

based sliding window model is used to process the SCADA data by the bin method, and a running 

state model of the wind turbine is established by data fitting. Taking the normal operation state 

model of the wind turbine as the standard reference and based on the Euclidean distance between 

the state model curve and the standard model curve, the health index of the wind turbine operation 

state is proposed. Finally, using SCADA data from two 2 MW direct-drive wind turbines as examples 

for analysis and discussion, the results show that: (1) health indicators have good stability and 

sensitivity to wind turbine operating conditions; (2) the width of the data window in the sliding 

window model must cover all operating conditions of the wind turbine to ensure that the health 

index depicts the operating state of the wind turbine; (3) the data window width, window increment, 

and data fitting modeling all affect the health indicators, and thus, the selection of the sliding window 

model parameters and the data relationship modeling methods should consider the accuracy and 

real-time performance of the health indicators; and (4) the data acquisition cycle does not affect the 

health indicators. Once the basic characteristics of the data relations are known, direct data fitting 

modeling is more efficient than bin preprocessing modeling. 
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1. Introduction 

In recent years, the world wind power industry has developed rapidly. According to the statistics, 

by the end of 2018, the world’s newly installed wind power capacity was 51.3 GW, and the world’s 

cumulative installed wind power capacity reached 591 GW [1]. The single unit capacity of wind 

turbines has also increased from 30 kW several decades ago to 8 MW at present. With the continuous 

increase in the installed capacity, wind turbines are also being deployed to more remote land and sea 

locations. Difficulties in maintenance lead to increased operating costs of wind farms and increased 

electricity consumption costs for customers, requiring more stringent requirements for the reliable and 

economical operation of wind turbines. 

To determine the real-time operation status of wind turbines and to implement reasonable 

maintenance of wind turbines, modern large wind turbines are equipped with SCADA (Supervisory 
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Control and Data Acquisition) systems. The application of SCADA data for wind turbine state 

identification, fault diagnosis, and early warning is currently a hot research topic in academic 

circles [2–4] and focuses mainly on statistical methods or data mining methods, such as neural 

networks and support vector machines [5,6]. In terms of statistical methods, Kusiak and others 

identified faulty wind turbines through comparative analysis of SCADA data of more than three wind 

turbines [7,8]. Feng and Kim et al. conducted identification research on gearbox faults by extracting 

the SCADA data of wind farms [9,10]. Yong et al. analyzed SCADA long term operation data based on 

multivariable state estimation technology, thus identifying gearbox faults of wind turbine units [11]. 

Yang et al. constructed an evaluation index of state discrimination based on the pretreatment of 

SCADA raw data to evaluate quantitatively the wind turbine blade failure and generator bearing 

failure [12]. Gill et al. [13] established a probability model of a wind turbine power curve based on the 

Copula function. Using the SCADA system operation data, the results showed that the early failure 

symptoms of blade degradation and the yaw and pitch system of wind turbines could be effectively 

monitored. Kusiak et al. [14] used the Hotelling T2 statistical method to analyze the active power 

operation data of a wind turbine to identify its operation state. Yan et al. [15] selected characteristic 

parameters based on the BP neural network model and used the RSME method to identify generator 

bearing faults. Zhu et al. [16] proposed a fuzzy synthetic method for real-time condition assessment of 

the wind turbine gearbox to reduce the Operation and Maintenance (O&M) cost with the optimized 

O&M strategy. In terms of artificial intelligence methods, Zaher et al. [17] constructed a BP neural 

network model of gearbox temperature to identify faults. Schlechtingen et al. [18] applied an adaptive 

neuro-fuzzy inference system to SCADA data processing for a wind farm and investigated wind turbine 

state identification. Li et al. [19] established a standard operating state model of a wind generator 

based on the neural network method and proposed a health index to measure the difference between 

the operating state of the generator and the standard state and to evaluate the operating state of the 

generator. Ren et al. [20] proposed a fault diagnosis method based on Variational Mode Decomposition 

(VMD) Multi-scale Permutation Entropy (MPE) and Feature based Transfer Learning (FTL) to monitor 

the health condition of the wind turbine gearbox. These studies are of guiding significance to the 

evaluation and identification of wind turbine operation status, but lack in-depth interpretations of the 

physical significance of the evaluation of the wind turbine operation status and systematic analysis of 

the factors affecting the evaluation. 

Using SCADA data, this paper proposes a new health index and its calculation method to 

characterize the operating state of wind turbines. The remaining part is organized as follows. 

In Section 2, the data relationship model of the wind turbine operating state is proposed by using the 

sliding window model and the data bin process method. Then, the health index of the wind turbine 

operating state is proposed based on data relations. In Section 3, two 2 MW direct-drive wind turbine 

units of the same model on a wind farm are selected to describe the health index. One of the wind 

turbines encountered yaw bearing tooth fault. The effect of window width, window increment, data 

sampling period, and data relationship modelling on the health index are investigated. Finally, Section 4 

ends the paper by summarizing the main conclusions. 

2. Materials and Methods 

2.1. Data Relationship Modeling of the Wind Turbine Operating State 

2.1.1. Data Analysis 

Wind turbine SCADA systems are data acquisition and monitoring control systems that include 

Computer, Communication, Control, and Sensing technologies (3C + S). SCADA systems sample and 

store many operational parameters during the operation process of a wind turbine, including wind 

speed, rotor speed, pitch angle, vibration acceleration, generator torque, and output power, at a set 

frequency. The data sampling and storage period is generally measured in minutes or seconds. An 

example of raw SCADA data with a sampling period of 1 s is shown in Table 1. 
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Table 1. Raw SCADA data. 
 

No. Time (hh:mm) Wind Speed (m/s) Rotor Speed (rpm) . . . Power (kW) 

1 14:20 5.9 12.82 . . . 434 
2 14:20 6.0 12.72 . . . 432 

3 14:20 6.1 12.72 . . . 435 
. . . . . . . . . . . . . . . . . . 

 

Because a SCADA system records data during both normal operation and shutdown and startup 

processes, failure or abnormal operation of the wind turbine can also be detected. To improve the 

accuracy of the results, the raw data should be preprocessed, and only data from normal operation 

should be retained for analysis. In some cases, measurement reference error, such as pitch angle, or errors 

caused by measurement positions, such as with wind speed correction, should be corrected [21]. In other 

cases, specific data may be required for analysis based on the topic being investigated. For example, in 

this paper, the wind speed between the cut-in wind speed and the rated wind speed in the SCADA 

raw data must be analyzed; thus, the data describing the wind turbine pitch stage are removed, and 

the nonlinear effect of pitch change is not considered. 

A wind turbine converts wind energy into electric energy. Different wind speeds output different 

electric power, and different wind speed distributions also output different electric power distributions; 

these facts imply various functional relationships between SCADA parameter data and wind turbine 

health metrics. The factors that affect these functional relationships include both the wind turbine itself 

and external factors. There are two main factors in the system itself: on the one hand, the structural 

parameters of the wind turbine, including blade airfoil, wind wheel diameter, etc.; and on the other 

hand, the operating parameters related to the wind turbine control mode, such as the maximum power 

tracking control mode when the wind speed is lower than the rated wind speed and the constant 

power control mode when the wind speed is higher than the rated wind speed. 

To clarify the various relationships among the wind turbine SCADA data, this paper divides the 

parameter data into input and output parameters according to the operation parameters corresponding 

to SCADA data and the input/output relationships of the wind turbine system and its subsystems. 

This paper also establishes pairwise corresponding relationships between the parameters. For example, 

in terms of three parameters, such as wind speed, rotation speed, and output power, the parameter 

relationship includes: the relationship between the wind speed and rotation speed, where wind speed 

is the input parameter and rotation speed is the output parameter, which depends on the wind wheel 

subsystem and mainly includes the wind wheel, pitch control system, and yaw control system; the 

relationship between rotating speed and power, where the rotating speed is the input parameter 

and power is the output parameter, which depends on the transmission subsystem, electromagnetic 

subsystem, and power subsystem and includes components such as the transmission device, generator, 

converter, and transformer; the relationship between wind speed and power, where wind speed is the 

input parameter, and power is the output parameter, which depends on all parts of the wind turbine, 

including all subsystems. 

2.1.2. Sliding Window Model 

The wind turbine SCADA system data are a data sequence arranged in chronological order: 

. >
D = (X1, t1), (X2, t2), . . . , (Xi, ti), 

. . . (1) 

where Xi is the dataset recorded at time ti (i = 1, 2, 3, . . . ). The SCADA sampling frequency τ is 

1/(t i − ti−1), and: 

Xi = [ xi1 xi2 . . . xij . . . ] (2) 
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where xij is the jth wind turbine state parameter in Xi (j = 1, 2, 3, . . . ), such as wind speed, rotation 

speed, and power. During wind turbine operation, the SCADA system creates and stores a stream of 

data for later analysis. 

To evaluate the real-time running status of wind turbines, a sliding window model based on time 

is used to process the data stream, and the status online identification is determined by updating the 

SCADA data in the window in real time, as shown in Figure 1. The data recording frequency is defined 

by τ, the data length contained in the window by h, the time length by hτ, the increment by q, and the 

time increment by qτ. Thus, the SCADA data processed at time tk (k > h) is a data matrix recorded 

from time tk−h to tk (i.e., sliding window data Dk): 

h 
D = (X , t 

 
) (X , t iT ) . . . (X , t ) 

k 
 

k−h k−h k−h+1 k−h+1 k  k 
 

 (xk−h,1, tk−h) (xk−h+1,1, tk−h+1) . . . (xk,1, tk )   (xk−h,2, tk−h) (xk−h+1,2, tk−h+1) . . . (xk,2, tk ) 
 

 . . 
 

 

(3) 

 . . ......................................................................  
 
(xk−h, j, tk−h) (xk−h+1, j, tk−h+1) . . . (xk, j, tk ) 

 

where k is related to the defined window width h and increment q, k = h + nq; n is the number of time 

steps, and n = 1, 2, .........When data processing finishes at time tk, both ends of the window move q 

along the positive time direction simultaneously, and the data matrix to be processed changes to Dk+q. 

 
h 

 

q 

 

 

 

 

t1 tk-h tk-h+q tk tk+q t 

Figure 1. Sliding window model. 

Changing the window width h adjusts the amount of data in the window, and changing the 

increment q adjusts the update frequency of the data in the window. The data scale corresponding 

to the window width h must ensure that the relationship between these data can accurately and 

stably describe the essential relationship, while the update frequency corresponding to the increment q 

must ensure that there is sufficient calculation processing time to determine the essential relationship 

between these data. In general, the larger the window width h is, the larger the corresponding data 

scale is, and the more accurate and stable the relational model obtained by data processing mining is. 

However, excessive window width h will lead to an increase in data processing time. Additionally, 

a smaller increment q yields a faster update frequency and a shorter time (period) between the two 

states, which means the online state identification has better real-time performance. 

2.1.3. Data Bin Processing 

Due to the turbulent character of the wind speed [22] and the large scale of wind turbine SCADA 

data, the relationships between the data parameters are complex and contain many nonlinear effects [23]. 

Thus, it is difficult to identify relationships from scatter plots, and bin processing must be carried out. 

Before bin processing, the data should be preprocessed as the following steps. 

Step 1: Extract the data of wind speed, rotor speed, and output power. The characters of v, ω, and 

P are employed to denote these parameters, respectively. 

= 
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Step 2: Eliminate the shutdown data and zero value data by judging the values of ω and P. If ω ≤ 0 

or P ≤ 0 hold, the corresponding state parameters should be eliminated. Furthermore, null data should 

also be eliminated. 

In this paper, wind speed v and output power P are used as examples, and a scatter plot of the 

relationship between wind speed and wind turbine output power is shown in Figure 2. 

 

Figure 2. Scattered relationship between wind speed and output power. 

According to the IEC 61400-12-1 standard [24], the bin method was used to process data in this 

study. The data in each window are divided into N bins using wind speed as the reference, where: 

N = 
vmax − vmin 

0.5 

 

(4) 

where vmax is the maximum wind speed in the window and vmin is the minimum wind speed in 

the window. 

The average wind speed and average power in the ith bin are then calculated as follows: 

  1 ,
Li 

vi = 
Li 

vi,j (5) 

j=1 
 

1 ,
Li 

Pi = 
L 

j=1 

 

Pi,j (6) 

where Li is the number of data groups in the ith bin; vi,j is the wind speed value of the jth group in the 

ith bin; and Pi,j is the power value of the jth group in the ith bin. 

After data bin processing, the relation curve between wind speed and power in the window can 

be obtained, as shown in Figure 3. Using the input parameter data as a reference, the output parameter 

data can be processed in the same way to obtain the relationship between various measures. 
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Figure 3. Relationship between wind speed and output power after bin processing. 
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2.1.4. Data Relationship Modeling 

It is generally believed that the relationship between two measures can be approximately modeled 

by polynomials using input parameter data x and output parameter data 
-
y [12]. The relationship 

between these two measures can be expressed as the following polynomial: 

-y = a0 + a1x + a2x2 + . . . + anxn (7) 

where, a0, a1, . . . , an are constants that depend on the unit structure and control mode; and n is the 

polynomial fitting order. A larger n tends to yield better fitting accuracy. However, if the fitting order is 

too high, the computation time will increase, and numerical stability may become problematic, yielding 

a worse fit. Using the bin processed data relation graph and the physical and mechanical principles 

between the corresponding parameters, a reasonable fitting order can be selected. For example, the 

relationship between wind speed and wind turbine output power can be considered to be third 

order [25]. 

The constants a0, a1, . . . , an in Equation (7) can be obtained based on the least squares fitting 

method, where the objective function is: 
 

,N h 
-i2 

H = min y − y 
i=1 2 (8) 
,N = min [y − (a + a x + . . . + a xn)] 

0 1 n 

i=1 

2.2. Health Index of Wind Turbine Operating State 

2.2.1. Health Indicators Based on Data Relations 

The real-time data relation model is essentially the running state model of a wind turbine generator 

and its subsystems. When a unit is operating normally, the operating model remains unchanged, 

and the model parameters are basically constant, although it may be disturbed by environmental 

factors. Different units, operation models and parameter values may be used. When the unit structure 

and control mode change, due to events such as component damage or control failure, the model will 

change, indicating that the operation model and state of the wind turbine unit have changed. From the 

above analysis, the wind speed and output power of the wind turbine generator are the total input and 

output of the whole energy conversion process. Therefore, the wind speed V and the output power P 

in matrix Dk are used to process SCADA data in real time using the sliding window model described 

in Figure 1. The sliding window gradually moves along as time continues, and the state parameters to 

be analyzed in each window are processed using Equations (5) and (6) to obtain the functional relation 

between the wind speed and out power of the wind turbine at different times (i.e., the coefficients 

a0, a1, . . . , an). Let the coefficient matrix at tk time be: 

A(k) = 
h 

a0(k) a1(k) . . .  an(k) 
i 

(9) 

Equation (9) shows that the identification of the operating state of the wind turbine is transformed 

into the identification of the functional operation model determined by the coefficients a0, a1, . . . , an. 

To evaluate the running health status of wind turbines and their subsystems in real time, a data 

relation standard model is generally established based on the data from a time period during normal 

operation of the wind turbine. Then, the differences between the state model and the data relation 

standard model at each operation time of the data relation are investigated and compared. 
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2.2.2. Discussion on Health Indicators of Wind Turbine Operation 

The relationship between the wind speed and power is the most important relationship among 

wind turbine operating conditions. A change in the wind turbine operating state is reflected in a 

difference between its wind speed and power curve; thus, many researchers identify the operating 

health state of the wind turbine by quantifying the difference between wind speed and the power 

curve at different times. 

Under normal operation, a data relation standard model is: 

Pstd(v) = astd,0 + astd,1v + . . . + astd,nvn (10) 

Let the tk time data relation model be: 

Pk(v) = ak,0 + ak,1v + . . . + ak,nvn (11) 

Let the state health indicator Cpower be defined based on the output power attenuation as: 

, vmax(k)  ,3 
[a (k) − a ]vj 

vmin(k) 
j j 

j=0 

Cpower = 
vmax(k) − vmin(k) 

dv (12) 

The state health index Ceu based on Euclidean distance is defined as: 

,  
, vmax(k)  ,3  2 [(a (k) − a )vj] dv 

vmin(k) j j 
j=0 

Ceu = 
vmax(k) − vmin(k) 

(13) 

State health indicators proposed by Yang [12] and others are: 

, vmax(k)
 ,3   

(a (k) − a )vj dv 
vmin(k)  j=0 

j j 

CY = 
vmax(k) − vmin(k) 

(14) 

With a 24 h window width and a 1 h increment, the wind speed and power data of wind turbine 

SCADA for 72 h are processed, and three state health indicators based on data relations were compared 

and analyzed. The results of these analyses are shown in Figure 4. The three health indicators changed 

markedly after 40 h, indicating that the health status of the wind turbine generator sets was abnormal. 
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Figure 4. Comparison of the health indicators of wind turbine operating conditions (total time step 

n = 73). 
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The operating health of wind turbines can also be evaluated by the real-time wind energy 

utilization efficiency. Because wind speeds can change rapidly and the mechanical energy stored on 

the wind wheel of the wind turbine can only change slowly due to the inertia of the wind wheel, 

the value of the transient wind power coefficient is inconsistent with the actual situation. As shown in 

Figure 5, the minimum value was 0.18, and the maximum value was 1.95, which was much larger than 

the theoretical maximum value of 0.593 of the wind power coefficient. 
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Figure 5. Directly calculated wind power coefficient. 

0.0 

Using the ratio of the total energy of the airflow flowing through the wind wheel in a period of 

time to the total electrical energy output in that time period and considering the energy stored on the 

wind wheel [21], the wind power efficiency can be obtained as follows: 

, t2 
, t1 

 
1 2   1 2  

0 
Pdt − C 0  

Pdt + 2 Jω 
t=t2 

− 2 Jω 
t=t1 

P = , t2 1 
2 3 

, t1 1 2 3 (15) 

0  2 ρπR v dt − 
0  2 ρπR v dt 

where t2 > t1 and J is the moment of inertia of the wind wheel. Figure 6 shows the wind power 

efficiency of wind turbines at different times. The wind turbine generator power coefficient began to 

drop after 24 h, which is different from the change rule of the first three health indicators. 
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Figure 6. Wind power coefficient trends with time (total time step n = 73). 

2.2.3. Proposed Health Indicators for Wind Turbine Operating State 

The above four health indicators are all measures of energy utilization efficiency. These health 

indicators change when the wind turbine generator sets operate abnormally. However, due to the 

complexity of factors that affect the energy utilization efficiency, especially those related to the wind 

speed and how it changes during the observation period, there are differences between efficiencies 

when characterizing the abnormal structure and control mode of the wind turbine. 

From the comparative analysis, the wind energy utilization efficiency was shown to be a poor 

health indicator from the theoretical and practical points of view. The first three health indicators 

W
in

d
 s

p
ee

d
 (

m
/s

) 

R
o

to
r 

sp
e
ed

 (
r/

m
in

) 

W
in

d
 p

o
w

er
 c

o
ef

fi
ci

en
t 

C
p

 

W
in

d
 p

o
w

er
 c

o
ef

fi
ci

en
t 



 

American Journal of Applied Sciences Volume 15, Issue 1, 2025 

w 

 

consistently describe the occurrence and duration of abnormal operating conditions. However, 

from the perspective of stability and numerical sensitivity, the Euclidean distance based on data relation 

model function performed best. 

Therefore, the dimensionless health index Cd(k) of the wind turbine operating state is proposed 

based on the data relation at tk time and is defined as: 

v. . , vmax(k) ,3 2 
, 

vmin(k) C 
 

i=0 
[(ai(k) − astd i)vi] dv 

d(k) = 
(vmax(k) − vmin (k)) · P2 (16) 

where Pw is the rated output power of the wind turbine. 

The mathematical meaning of the state health index was shown to be the difference (root mean 

squared average) between the output power of wind turbines relative to the wind speed at a certain 

time and the output power of wind turbines relative to the wind speed at a normal time. The larger the 

index value is, the larger the difference between the output power of wind turbines and the normal 

value is, and the lower the wind energy utilization efficiency is. Conversely, the smaller the index 

value is, the smaller the difference from the normal value is, and the higher the wind energy utilization 

efficiency is. Therefore, the physical meaning of the health index of wind turbine operation state is the 

wind energy dissipation rate. 

3. Results 

To describe the health index of the wind turbine operation state proposed in this paper, two 2 

MW direct-drive wind turbine units (WT1 and WT2) of the same model on a wind farm were selected 

for study. SCADA data were selected from four days (7 September to 10 September); however, WT1 

broke down suddenly due to yaw bearing tooth fault on 10 September. Some parameters of the wind 

turbines are shown in Table 2. 

Table 2. Parameters of the 2 MW wind turbines investigated in this study. 
 

Parameter Name Value Parameter Name Value 

Rated power (kW) 2000 Cut-in wind speed (m/s) 3.5 
Rotor diameter (m) 82.6 Rated wind speed (m/s) 12 
Tower height (m) 80 Cut-out wind speed (m/s) 25 

Rated rotor speed (rpm) 17 Maximum wind speed (m/s) 70 

Blade weight (kg) 6750 Blade length (m) 40 

 

Based on the SCADA data recorded during the normal operation of the wind turbine on the first 

day, a data relation standard model was established. Using wind speed and power data as an example, 

the relationship between wind speed and power data is obtained as follows: 

Pstd(v) = 5316.85 − 2618.04v + 403.17v2 − 17.34v3 (17) 

If the window width is set at 24 h and the window increment is set at 1 h, the change rule of wind 

turbine generator operating health index is obtained via Equation (16), as shown in Figure 7. 
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Figure 7. Regularity of health status indicators over time (total time step n = 73). 

The window data of the 30th and 50th hours with their running state model curves are shown in 

Figure 8. The wind turbine unit was shown to operate normally at the 30th hour, and the state model 

curve at this time was not very different from the standard model curve, showing fluctuations within 

the normal range. At the 50th hour, the operation of the wind turbine generator set was abnormal, and 

the state model curve at that time differed from the standard model curve. However, it was difficult to 

observe the obvious difference between the two data scatter plots. This result also showed that the 

operation health index of wind turbine generator set in Equation (16) could describe a change in the 

operation state of the wind turbine generator set. In the authors’ previous research [26], we used a 

small probability method to judge the operation state of the wind turbine. The statistical analysis of 

the wind turbine health index was carried out in normal operation phase to obtain the distribution 

function. Then, according to the hypothesis of small probability event, the threshold value of the 

health index of wind turbine abnormal state was determined. Compared with the small probability 

method, the proposed health index was more sensitive to the abnormal state of the wind turbine, 

and the calculation consumption was lower. 
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Figure 8. Comparison of state model curves and standard state model curves at different times. 

To further analyze the factors that affect the operation health index of a wind turbine, the SCADA 

wind speed and output power data of the four days were processed with different window widths, 

window increments (i.e., time steps), and other window and modeling parameters. 

3.1. Effect of Window Width on Health Indicators 

In the sliding window model, a change in the window width changes the amount of data analyzed 

in each calculation. When the selected time increment q is 1 h and the window width h is 12, 24, 36, 

and 48 h, the health indices of the two wind turbines were calculated, and the results are shown in 

Figure 9. 
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Figure 9. Health indicators of WT1 under different window widths: (a) h = 12 h, total time step n = 85; 

(b) h = 24 h, total time step n = 73; (c) h = 36 h, total time step n = 61; (d) h = 48 h, total time step n = 49. 

Health indicators are the basis for evaluating the operation status of wind turbines. Even during 

normal operation, the health indicators fluctuated due to variations in wind speeds. However, a health 

index with excellent identification performance should meet the following conditions: when the 

wind turbine generator sets are operating normally, the health index should fluctuate stably in a 

small interval; conversely, when the wind turbine generator sets are abnormal, the health indicators 

should exhibit changes along a continuous trend. An analysis of Figure 9 showed that when the 

window width equaled 12 h, the health indicators of WT1 and WT2 fluctuated markedly during normal 

operation, indicating a lack of identification; thus, the health indicators were invalid, and misdiagnosis 

or false positives may occur during operation state evaluation. When the window width equaled 

24 h, 36 h, and 48 h, the health index was small and stable during normal operation, but increased 

rapidly for WT1 at Time 40. Thus, if the window width was too small, fitting accuracy would decrease. 

Conversely, and more importantly, the relationship model established by data fitting could not 

represent the relationship between the input and output parameters of the normal operation of the 

wind turbine because the data in the shorter window may not cover all operating conditions of the wind 

turbine, perhaps leading to invalid health indicators. The accuracy and stability of health indicators 

increased as the data window width increased; however, the time required for data processing also 

increased. Therefore, if the window width was too large, the speed at which health indicators were 

identified may decrease and may prevent online identification. For this study, the data window width 

must be above 24 h to ensure the effectiveness of the health indicators of wind turbine generator 

operating conditions. When the window width was 24 h, 36 h, and 48 h, the health index of WT1 

started to increase obviously after 35 h. The larger the window width was, the higher the accuracy of 
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the health index was. When the window width was 48 h, the health index changed obviously in less 

than 40 h. 

3.2. Impact of Window Increment on Health Indicators 

Let the window width h equal 24 h and the time increment q equal 0.5 h, 1 h, 1.5 h, and 2 

h. The resulting changes in the health index of the two wind turbine sets are shown in Figure 10. 

The window increment was shown to have no effect on health indicators. 
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Figure 10. Effect of time increment on the health indicators of the wind turbine: (a) q = 0.5 h, total time 

step n = 145; (b) q = 1 h, total time step n = 73; (c) q = 1.5 h, total time step n = 49; (d) q = 2 h, total time 

step n = 37. 

The time increment in the sliding window model reflects the frequency of data measurement 

within the window. The selected window width h = 24 h, and the time increment q was 0.5 h, 1 h, 1.5 h, 

and 2 h. The time consumption of the calculation of the health indicators for the two wind turbine sets 

at different time increments is shown in Figure 11. 
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Figure 11. Time consumption at different time increments. 
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As shown in Figure 11, the smaller the time increment was, the more calculation time steps were 

required and the longer the analysis would take. However, a higher frequency of data measurement 

in the window yielded better real-time performance of health indicator identification. Additionally, 

the larger the time increment was, the smaller the number of corresponding calculation steps was, 

and the higher the computational efficiency of the algorithm was. However, a lower frequency of data 

measurement in the window yielded worse real-time performance of health indicator identification. 

Therefore, an appropriate time increment must be selected based on the performance of the computing 

platform and the requirements for real-time state identification. 

3.3. Effect of Data Sampling Period on Health Indicators 

The data recorded by the SCADA system were averaged over a given time period. Different 

SCADA systems may have different periods of data acquisition. State health indicators should have 

good robustness to changes in data acquisition periods. The raw wind farm SCADA data used in 

this paper were recorded at 1 Hz and were then averaged at intervals of 5 and 10 s based on the time 

sequence to analyze changes in health indicators. Let the window width h equal 24 h and the time 

increment q equal 1 h. Then, the health index from Equation (16) was used to process 5 and 10 s interval 

data; these results are shown in Figure 12. 
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Figure 12. Effect of sampling frequency on the health indicators of the wind turbine: (a) sampling 

frequency is 0.2 Hz, total time step n = 73; (b) sampling frequency is 0.1 Hz, total time step n = 73. 

Changes in the health indicators were shown to be relatively consistent with those of the raw data, 

indicating that the proposed health indicators had good robustness to changes in the SCADA data 

sampling frequency. 

3.4. Impact of Data Relationship Modeling on Health Indicators 

SCADA data describe wind turbine performance, and modeling via data fitting is used to describe 

the operation of a wind turbine. Polynomials are typically used to describe unknown functional 

relationships. Generally, the higher the order is, the more accurate the description is. Under certain 

conditions, an increase in order will not significantly improve the accuracy. In this paper, first- through 

fifth-order polynomials were used to fit the wind speed and power data. The results of these analyses 

are shown in Figure 13. 
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Figure 13. Comparison between the relationship of wind speed and power with different fitting orders. 

Based on the fitting mean square error (RMSE) between the fitting curve and the data, increasing 

polynomial order does increase fitting accuracy in diminishing increments. The accuracy of the 

third-order polynomial was 10% higher than that of the first-order; however, that of the fifth-order 

was less than 5% higher than that of the third-order. For the relationship between wind speed and 

power data, the third-order polynomial yields good fitting precision and was thus used in this study. 

The relationship between wind speed and power in theory may be the third-order [25]. 

During the process of data relation modeling, the influence of “abnormal points” should be 

reduced as much as possible to ensure precise fitting. To achieve this goal, the work in [12] proposed 

preprocessing the data using the bin method before fitting. In this paper, the bin method was used to 

process the data so that the data relation curve could clearly show the basic characteristics and allow 

the selection of a reasonable fitting curve or polynomial. However, this method may yield a “missing 

report” of abnormal states due to some “abnormal points” caused by abnormal operating states or 

reduce modeling accuracy and increase computation workload. 

Fitting between the wind speed and output power was used again as an example. Raw data were 

substituted into Equation (8) for fitting; the resulting fit was then compared with that produced after 

pre-processing. The results of these analyses are shown in Figure 14. The root mean squared error 

was calculated over the whole raw data, and the calculated result of the direct fitting method equaled 

232.9, while that after pretreatment equaled 239.4; thus, direct fitting performed better than refitting 

after pretreatment. When the basic characteristics of data relations are mastered through physical 

and mechanical analysis, the bin method’s pretreatment is not needed, and the raw data can be used 

directly for model fitting. 

 

Figure 14. Comparison of different fitting methods for wind speed and power. 



 

American Journal of Applied Sciences Volume 15, Issue 1, 2025 

 

4. Discussion 

There are many factors that affect the modeling of the wind turbine operation status and the 

calculation of health indicators, including the accuracy and real-time performance of health indicator 

calculation. For example, increasing the data window width yields a higher accuracy in health indicator 

modeling and health status identification and an earlier warning of abnormal status identification. 

However, with the increase in the width of the data window, the time required for the computer 

to model and identify health indicators and the time required to identify abnormal states increase. 

As another example, a smaller time increment in the sliding window model yields better real-time 

performance, allowing faster identification of an abnormal operating health status. However, the time 

increment should be sufficient to complete calculations involved in operating health identification 

and to achieve real-time identification. Therefore, the selection of specific health indicators should 

be combined with the actual situation of wind turbines to coordinate the accuracy and real-time 

performance of health assessment. From the analysis of the examples in this paper, the method of 

identifying the operating state of wind turbines based on SCADA data was effective because advanced 

warning was much larger than the delay. 

The discussion of this problem involves SCADA system configuration. The better the system 

configuration is, the shorter the time required for the same calculation workload is. The calculation 

workload required for health index identification is also critical. For example, considering more 

relationships between wind turbine operating parameter data requires a higher computation workload 

and thus longer computation times for the same system configuration. Consider the following large 

wind turbine SCADA system configuration as an example: Intel i7-4790 CPU, 16 GB of operating 

memory, 1 TB hard disk, Windows 7 operating system. The system was used for modeling the 

relationship between wind speed data of WT1 and power data of WT1 in a window width by data 

fitting to analyze the time consumption of the data fitting calculation statistically. The width of the 

data window was set equal to 24, 30, 36, 42, and 48 h. The direct fitting method was used and then 

compared to the preprocessing and refitting method proposed in [12]. The modeling time is shown 

in Figure 15. The computation duration was shown to increase as the data window width increased, 

particularly when using the preprocessing and refitting method proposed in [12]. When the window 

width was 24 h, the computation duration of the direct fitting method was 5.67 s, and that of the 

preprocessing and fitting method was 11.79 s, which means that the computation duration time of the 

method proposed in [12] was approximately twice as long as that of the direct fitting method. 
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Figure 15. Comparison of the computation durations of different data processing methods. 

Based on the computation durations required for data processing, fitting, modeling, 

and identification, it could be assumed that if a wind farm had 20 wind turbine sets, each wind turbine 

set required 10 operation parameter input and output relation models concurrently, and the computer 
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configured by the SCADA was used for processing, the system would required 1134 s using the 

method proposed in this paper. The same system, using the method proposed in [12], required 2358 s. 

To ensure that enough time was available to complete the operation state identification calculation, 

the time increment in the sliding window model could not be less than 1134 s (i.e., approximately 

0.32 h). However, using the method proposed in [12], the time increment in the sliding window model 

could not be less than 2358 s (i.e., approximately 0.66 h). Therefore, the data processing method of 

direct fitting to the raw data had better real-time performance than the preprocessing and refitting 

method proposed in [12] and could identify the running health status of wind turbine generator units 

in a more timely manner. However, in terms of general large scale wind turbine SCADA system 

configuration, the sliding window time increment for the identification of wind turbine operating 

state health indicators based on SCADA data analysis may require tens of minutes or even one hour, 

which means that the currently obtained state health indicators were actually the states (operating 

data) tens of minutes or even one hour ago. Therefore, state identification was always delayed, and 

real-time performance was the reverse characteristic of this delay. 

5. Conclusions 

(1) Using the sliding window model and the bin method to process the data, a polynomial fitting 

modeling method for wind turbine operation state based on SCADA data relation was proposed. 

(2) Based on the Euclidean distance of the data relation curve, a dimensionless health index for 

wind turbine operation and its calculation were proposed. The proposed health index showed good 

stability and sensitivity. 

(3) The width of the data window in the sliding window model must cover all working conditions 

of the wind turbine to ensure that the health index depicts the running state of the wind turbine. 

(4) The data window width, window increment, and data fitting modeling affect the health 

indicators. The selection of sliding window model parameters and data relationship modeling 

methods should comprehensively consider the accuracy and real-time performance of health indicators. 

Considering the SCADA data of the two wind turbine sets of the same model on a given wind farm as 

an example, the analysis showed that the data acquisition cycle had no effect on the health indicators. 

Once the basic characteristics of data relations were known, direct data fitting modeling was more 

efficient than bin preprocessing modeling. 
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