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Abstract: To satisfy increasing demands for ecofriendly vehicles, researchers are now studying electric 

vehicle (EV)-related technologies. In particular, integrated bidirectional onboard battery charger 

(OBC)/low-voltage DC–DC converter (LDC) modules are being researched to improve the efficiency of 

onboard chargers for EV charging applications. In this study, a numerical analysis method is proposed 

that considers the power loss and heat flow characteristics in the design of a 7.2 kW integrated 

bidirectional OBC/LDC module. The developed module supports four operating modes depending 

on the service situation: OBC and LDC single operation, OBC/LDC simultaneous operation, and LDC 

operation. The mode is selected based on the power system flow. The characteristics of the circuit 

were analyzed in each of the four modes to compute the heat loss from the major heating elements. 

The results of a numerical analysis of the internal cooling characteristics showed that the internal 

temperature was higher in the OBC single operating mode than in the OBC and LDC simultaneous 

operating mode in which the power loss was the highest. The results emphasize the importance of 

ensuring that cooling designs consider the characteristics of various modes as well as the worst-case 

power loss. 
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1. Introduction 

Until recently, the internal combustion engine was the predominant type in the automotive 

market. However, the ongoing depletion of fossil fuels and worsening environmental pollution is now 

causing this market to slowly shift toward an emphasis on ecofriendly cars with high fuel efficiency. 

Thus, several developed countries, such as the United States, Japan, and Europe, are now taking 

steps to stimulate the ecofriendly electric vehicle (EV) market and to promote the broad proliferation 

of charging infrastructure, which is a critical factor in the success of EVs. At the same time, much 

effort has been focused on improving the stability of renewable energy sources and supporting the 

decentralization of energy. 

A major area of focus about EV technologies is to provide components and systems that are high-

performance, lightweight, and stable. Development efforts are currently focused on advancing battery 

technology, such as high-performance, high-density energy storage technologies, and electric drive 

systems, including high-voltage electrical components, high-power drive motors, and motor control 

technologies, all of which are core technologies for EVs. Furthermore, to simplify the control and 

electrical systems in EVs and reduce the overall cost, modules are now being developed that integrate 

several previously disparate functions into one assembly. One example of this trend is the integration 

of power conversion devices to increase their efficiency and improve their performance. 
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Researchers currently working in the area of integrated power converters are focusing on a 

variety of circuit improvements [1–3]. For example, onboard chargers (OBCs) and low-voltage DC–DC 

converters (LDCs) are being researched as a way to overcome space limitations and poor fuel economy of 

systems with connected batteries [4–7]. These integration efforts are seeking to leverage high-efficiency 

circuit structures using miniaturized, lightweight components, such as switch-mode power supplies 

(SMPSs). Studies are also underway to solve the low reverse recovery charge problem using a GaN 

element with a totem-pole structure in continuous current mode (CCM) operation [8,9]. Another 

example is the use of high-frequency switching signals using an insulation-type converter, such as a 

series-loaded resonant DC–DC converter (SRC) or LLC resonant converter, to minimize power loss in the 

DC–DC converters commonly used for the auxiliary charging of EVs by applying [10–13]. In addition, 

as cooling performance has become an important consideration in circuit improvement, experimental 

methods of evaluating the cooling performance of heating elements are also being researched [14]. 

Note that such studies typically employ experimental methods instead of the numerical methods 

commonly used in battery pack design [15]. 

Recently, the Buck Converter of the two-way charging system has been proposed as an optimization 

control method considering the State of Charging (SOC) [16–20] and the State of Healthy (SOH) [21–23], 

and the research is being actively conducted. Among the SOC methods, the CC–CV (Constant 

Current/Constant Voltage) method, which is the simplest basic model and is controlled according to the 

determined voltage and current [16], and the CVCC–CV (Constant Voltage/Constant Current/Constant 

Voltage) and MCC–CV (Multi-Stage Constant Current/Constant Voltage) have been proposed for fast 

charging and securing cycle stability [17,18]. On the basis of this, a study has been performed on the 

converged models. For example, CC–CV and MCC–CV have been converged to consider variables 

such as charging speed and energy conversion efficiency [19,20]. In addition, under high temperature 

conditions, the battery surface may exceed the allowable temperature depending on the state of charge 

and discharge, resulting in a negative performance such as battery life cycle and charging acceptance. 

The method considering SOH has been proposed as a method for checking battery life and water 

solubility to improve performance degradation problems and stability problems due to overheating, 

and research for checking the effects of temperature, energy efficiency, and battery aging has been 

carried out [22,23]. 

In previous studies, efforts have been made to improve circuit efficiency and improve cooling 

performance. However, most of the previous studies are designed considering only specific conditions 

or conditions for main modes. The power conversion device used in this study operates in various 

modes depending on the situation, and the circuit characteristics change accordingly, so it is necessary 

to consider the design stage to cope with this. In particular, the 7.2 kW integrated bidirectional onboard 

battery charger/low-voltage DC–DC converter (OBC/LDC) module is very intensively designed in 

order to increase power density; thus, it is indispensable to understand the characteristics of each 

operation mode to effectively dissipate heat generated from internal circuits. In this study, a numerical 

analysis method is proposed that considers the power loss and heat flow characteristics in the design 

of a 7.2 kW integrated bidirectional OBC/LDC module. In addition, the cooling system design takes 

into account changes in the heating characteristics depending upon the operating modes. 

A 7.2 kW integrated bidirectional OBC/LDC module for an EV consists of four main parts: 

A totem-pole power factor correction (PFC), series resonant converter, high-voltage buck converter, and 

low-voltage buck converter. Each part is composed of an inductor to induce a voltage in proportion to 

the current change rate, a diode that rectifies the current by allowing it to flow in only one direction, a 

metal–oxide–semiconductor field-effect transistor (MOSFET), which is a type of transistor that performs 

amplification and switching by adjusting the current or voltage flow, and a transformer that increases 

or lowers the AC voltage via the mutual inductance principle. The main sources of heat in this type 

of module are the diode, rectifier, and inductor, and the heat generated from these devices has the 

potential to degrade the performance and safety of the system if not properly handled. 
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Thus, the arrangement, cooling method, and operating conditions are critical factors in the stable 

performance of the power converter. In addition, it is essential that the cooling performance be 

examined in light of the heat generated by each element and its supporting structure. The conventional 

approach to the cooling problem involves numerical analyses with the objective of minimizing the 

internal temperature of each device, while considering the heat value produced by each major heat 

source to be constant. However, as the size and position of the heat sources in the proposed 7.2 kW 

integrated bidirectional OBC/LDC module varies depending on the operating mode, the conventional 

approach cannot be used in that design. 

To overcome this limitation, a numerical analysis method is introduced to support a cooling 

system design that supports changes in the operating mode of the module. The proposed method 

involves an unsteady state analysis to determine the changes in the circuit and heat flow in each 

operating mode. Then, the obtained circuit heating and internal cooling characteristics are analyzed 

based on the numerical results. 

The circuit and heat flow analysis method used in this study are depicted in Figure 1. The circuit 

was configured based on the results of the numerical analysis, and the power loss and efficiency were 

then calculated in each operating mode (Modes 1 to 4) using MATLAB/Simscape. The calculated power 

loss of each device was then converted to a heating value and used in the subsequent analysis. A heat 

flow analysis model constructed in the ANSYS Fluent 19.2 software package was used in the evaluation 

of the cooling performance. The circuit characteristics of each operating mode of the module were 

analyzed using the results, and the cooling performance was then validated based on the computed 

internal heating characteristics. 

 

 
Figure 1. Numerical analysis method used for the 7.2 kW integrated bidirectional onboard battery 

charger/low-voltage DC–DC converter (OBC/LDC) module developed in this study. 

2. Development of the Numerical Model 

2.1. Circuit Simulation Model of the Integrated Module 

A circuit diagram of the developed 7.2 kW integrated bidirectional OBC/LDC module is shown 

in Figure 2. In this circuit, the totem-pole PFC and buck converter were implemented as bridgeless 

and synchronous rectification types, respectively. These operate as follows: When the AC voltage is 
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positive, the PFC stores energy in the inductor and switches Q3–Q5 are turned on. Later, when Q3–Q5 

are switched off, the energy stored in the inductor is discharged and the current flow passes through 

switches Q1–Q2 and Q6. The PFC control block is configured based on the duty cycle of the current 

(Equation (1)) and the voltage–current (Equation (2)) relationships as follows [24]: 

Gi = 
iL 

= 
 CVDC + 2(1 − D)IL  

≈ 
V0 

, (1) 
d (LC)s2 +
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Figure 2. Circuit diagram of the designed 7.2 kW integrated bidirectional OBC/LDC module. 

 

The DC-DC converter in the circuit is represented as a series resonant converter (SRC) in which 

the primary and secondary circuits are separated using a transformer. In the forward direction, the AC 

voltage is converted to a DC voltage using switches Q7 and Q8, whereas in the reverse direction, the 

voltage is converted using switches Q20–Q23. The output voltage in the forward direction is determined 

by the high- or low-battery-voltage setpoints, which depend on the winding ratio, resonance point, 

and operating frequency of the transformer. This circuit was designed to generate a constant output 

voltage by aligning the resonance point and operating frequency to 300 kHz. In addition, the system 

was configured to respond to a broad range of output voltages depending on the number of windings. 

The SRC resonance-type circuit is configured through a serial connection with a transformer ratio of 

12:14:1, based on the output in the high- and low-voltage directions at the primary side. The equivalent 

model was constructed based on this configuration. The output voltage can be predicted as follows [25]: 

Vconvert = Gsw.gGresonant.gNs/Np, (3) 
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The resonant gain graph of the SRC resonant circuit can be defined as follows. Note that the m 

value was omitted because, unlike the LLC circuit, the SRC circuit has only one inductor: 

 

Gresonant.g = 
F2(m − 1) 

  1   2 

 
(4) 

1 + jQ Fx 
− Fx 

where Fx is the ratio of the resonance frequency and switching frequency and Q (Equations (5) and (6)) 

is the quality factor, which is defined as follows: 
√

Lr/Cr 

Q = 
Rac 

, (5) 

Rac = 
8 

π2 

 
2 
s RL. (6) 
p 

Using Equations (4) to (6), the resonant gain of the SRC circuit can be expressed as shown in 

Figure 3, where the maximum output voltage can be 467 V. Therefore, it is necessary to control the 

step-up and step-down through the introduction of the buck converter to stabilize the battery. 

 

Figure 3. Resonant characteristic curve. 

 

The buck converter reduces the voltage based on the output voltage of the DC–DC converter. 

The inductor voltage is applied when the switch turns on and the amount of current increases. 

In contrast, when the switch turns off, the operating mode disconnects the input power. The control 

block of the buck converter circuit maintains a high stability by enabling constant current (CC) operation 

during charging. Then, when discharging, the constant voltage (CV) control method is used instead to 

improve the overall efficiency. 

2.2. Simulation of the Operating Mode 

As shown in Figure 4, the bidirectional integrated circuit has four operating modes: OBC or LDC 

single operation, LDC operation, or simultaneous operation of the OBC and LDC in forward and 

backward directions. 

N 

N 

, 
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Figure 4. Operating modes in the 7.2 kW integrated bidirectional OBC/LDC module. 

 

In Operating Mode 1, the OBC operates independently and the vehicle remains stationary. The 

LDC does not operate in this mode because the low-voltage battery is sufficiently charged. When 

compared to a driving situation, the total load of the circuit in this mode is significantly lower. 

In Operating Mode 2, the LDC operates independently. In this mode, the low-voltage battery is 

charged by the high-voltage battery, while the vehicle is driving. Under driving conditions, the 12 V 

battery has 80% load. The OBC circuit does not operate without the AC charge cable connected, and 

the power flows from the high-voltage battery toward the LDC circuit. Consequently, the maximum 

power of the LDC in independent operation is 2.5 kW. 

Operating Mode 3 is defined as the simultaneous activation of the OBC and LDC circuits 

when the low- and high-voltage batteries are not sufficiently charged. This mode provides enough 

additional power to operate the controllers in the EV, such as the engine control unit (ECU) and battery 

management system (BMS). In total, an output power of 6.9 and 0.3 kW can be generated in the OBC 

and LDC circuits, respectively. 

Operating Mode 4 is defined as the time when power flows from the high-voltage battery to 

power the system and the LDC. This occurs when the EV is stationary. In this mode, output powers of 

3 and 0.3 kW can be generated in the OBC and LDC circuits, respectively. 

Using these definitions of the operating modes, the heat loss in each mode was predicted by 

simulating the circuit. The heat loss over time for each of the major heating elements was derived, 

and the values were applied to the heat flow model to analyze the cooling characteristics in the 

integrated module. 

2.3. Numerical Model 

A numerical model was constructed to verify the heat flow characteristics of the 7.2 kW integrated 

bidirectional OBC/LDC module. Note that this model contained a simplified representation of the 

module that included only the major heating elements. This approach was adopted as the remaining 

elements had only a small impact on the heat flow characteristics. In addition, the bolts or nuts used to 

mount the outer structure in the EV were ignored. 

The configuration and shape of the integrated module from several perspectives are illustrated 

in Figure 5. This was used when mounting the module in a vehicle, which was the objective of the 

analysis in this study. The module body is composed of a top cover, main body, and bottom cover. 
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There is an OBC circuit inside the top cover, which is sealed to protect the internal devices. Inside the 

main body, there is internal support for the OBC/LDC circuits and a cooling channel for recovering 

heat from the device. These components are also sealed to protect the internal devices. 

 

Figure 5. Geometry of the 7.2 kW integrated bidirectional OBC/LDC module. 

 

The parts inside the module that generate the most heat are six inductors, one transformer, 

16 MOSFETs, and 11 N-MOSFETs. The heating value of each device was estimated in the previously 

described circuit simulation and varies depending on the mode. 

Cooling water is injected into the inlet and flows along the parallel channels to recover heat 

from the heating elements. In the numerical model, the heat is assumed to be transferred from the 

components to the cooling water via natural convection through the air layer inside the charger. When 

evaluated, this approach provided a result close to that of the actual model. 

To verify the flow characteristics of the integrated module, a flow and heat transfer analysis was 

performed. To accomplish this, a three-dimensional model of the simplified charger was constructed 

and an unsteady-state analysis was performed to observe the initial temperature changes inside the 

charger. The physical properties of the body of the charger and the internal fluid were assumed to be 

constant, and it was also assumed that heat was generated uniformly in each heating element area. 

Based on these assumptions, the governing equations for the flow and heat transfer analysis were 

as follows: 

• Mass conservation equation 
∂ρ → 

∂t 
+ (ρu ) = 0. (7) 

• Momentum conservation equation 
 

∂ ρ
→
u  

∂t 
+ ∇ · ρ

→
u →u

   

= −∇p + ∇ · 

 

µ∇→u
 
. (8) 
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• Transport equation for κ (standard k-ε model) 

∂(ρk) 
+ ∇ ·

 
ρ k →u

 
= ∇ · 

" 
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µt 

!

∇k

# 
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• Transport equation for ε (standard k-ε model). 

∂(ρε) → µt
 ε ε2 

 

• Energy conservation equation 
 

∂
 
ρCpT

 

+ ∇ ·
 
ρC T

 
= ∇ ·

 
k ∇T

 
+ S . (11) 

 

First, the fluid flow was analyzed by solving the continuity and momentum equations. Then, 

the equation describing the k-ε standard model was solved to account for the turbulence caused by the 

high Reynolds number of the fluid (Re = 7453). Next, the energy conservation equation was solved to 

determine the heat transfer to the internal heating elements and the surroundings. Finally, to model 

the natural convection inside the charger, the air density was calculated assuming the air was an 

incompressible ideal gas. 

2.4. Properties and Boundary Conditions 

To determine the heat flow characteristics inside the integrated module when mounted in a 

vehicle, the model used physical properties and boundary conditions that were identical to those of the 

actual device. First, the solid properties of the external charger (aluminum), inductor (copper), diode 

(plastic), transformer (steel + copper), and printed circuit board (PCB) of the charger were defined. 

Then, the physical properties of a fluid were assigned to the internal air and cooling water. The values 

of the physical properties are listed in Table 1. In the case of the inductors and diodes, although these 

devices contain various materials, the physical properties were selected based on the representative 

element that occupied the largest part. Furthermore, although the actual physical properties of the 

various components varied with temperature, these factors were ignored because they were assumed 

to be small. 

Table 1. Physical properties of the components and materials in the integrated module. 
 
 
 

 

1.789 × 10−5 

 
 
 
 
 
 

 

The boundary conditions of the integrated module are listed in Table 2. The inlet velocity applies 

to the cooling water inlet used for system cooling. The cooling water flow rate of 6 LPM in an actual 

operating charger was converted to velocity for use in the analysis. The outlet pressure refers to the 

pressure at the cooling water outlet to ensure that the circulating water can be discharged without 

encountering resistance. Most of the heat generated in the integrated module is removed via the 

circulating cooling water, and the remainder is discharged to the atmosphere via convection as the 

Description 
Density 

Viscosity Specific Heat Thermal Conductivity 

[kg/m3] [Pa-s] [J/kg-K] [W/m-K] 

Fluid 
Water 

Air 

998.2 

variable 
1.003 × 10−3 4182 

1006 

0.600 

0.024 

 Aluminum 2719 - 871 202.4 
 Copper 8978 - 381 387.6 

Solid Diode 1190 - 1465 0.190 
 PCB 1890 - 600 0.810 

 Steel 8030 - 502 16.3 
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external surface is exposed to air. Therefore, a convection condition was allocated to the external 

surface (300 K, h = 10 W/m2-K) in the model to represent the heat being discharged to the outside air. 

Furthermore, the internal air is circulated via natural convection based on the temperature difference 

(density difference), which results in heat diffusion. To simulate this, the air density (assuming an 

incompressible ideal gas) was calculated based on the temperature, which was used to specify the heat 

transfer by natural convection considering the effects of gravity. The results of the previous circuit 

simulations were used to determine the heating value of each part and device in this model. 

Table 2. Boundary conditions used in the numerical analysis model. 
 

Condition Value Unit 

Inlet 
Velocity 

Temperature 
2.17 
300 

m/s 
K 

Outlet Outlet Pressure - - 

Outer Wall 
Temperature 

Convection Heat Transfer Coefficient 

300 

10 

K 

W/m2-K 

Heat Source Uniform Heat Source variable W/m3 

 

2.5. Numerical Procedures 

A numerical analysis was conducted using the above governing equations and boundary conditions 

together with the ANSYS Fluent 19.2 software package. During the analysis, the internal temperature 

variation over time and the internal temperature changes in each operating mode were assessed. 

Specifically, the cooling performance based on the size of the heat source in each mode was monitored 

and evaluated relative to the maximum temperature of each device. The convergence criterion for 

solving the continuity, momentum, and energy equations was 10.6. To evaluate the grid dependency, 

an analysis was conducted for grid sizes from 4,480,000 to 10,230,000, and it was determined that stable 

results could be achieved at a grid size of 7,840,000. 

3. Results and Discussion 

A circuit analysis was conducted using the circuit diagram shown in Figure 2. In terms of the 

system power, power was supplied using CCM. Graphs representing the input voltages applied 

during the simulation and the corresponding output voltages derived through the analysis are shown 

in Figure 6a,c. Here, the applied input voltage and current were 85–265 V and 32 A, respectively. 

The control block ensured that the input/output voltages were similar in every mode. 

For the PFC circuit, the control block minimized the phase angle to produce a DC output voltage 

of 400 V. Furthermore, the fixed output voltage in the SRC circuit was predicted to be 470 V when the 

resonant frequency was aligned to the operating frequency. This value is similar to that predicted 

using the gain function. 

The operation of the buck converter varied depending on the high- and low-voltage battery 

conditions. A simulation was conducted for a state of charge (SOC) of 0%, and the results are shown in 

Figure 6b,d. In the figures, it can be seen that output voltages of 220 and 13 V occurred at the ends of 

the high- and low-voltage buck converters, respectively. Furthermore, when the charge state continued, 

the current was fixed under CC control, and the output voltage increased to 450 V at the high-voltage 

end. In the discharge state, a fixed voltage was maintained under CV control. Here, the input voltage 

in Operating Modes 2 and 4 was 450 V. 
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(c) 

Figure 6. Cont. 
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(d) 

Figure 6. Input and output voltages of the integrated module in (a) Mode 1, (b) Mode 2, (c) Mode 3, 

and (d) Mode 4. 

The proposed integrated module has four operating modes, and the power loss of each is shown 

in Figure 7. In each mode, the output power ranged from 2.5 to 7.5 kW, and the MOSFET device 

generated the largest loss in all modes. First, Operating Mode 1 (Figure 7a) represents the independent 

operation of the OBC circuit, while the LDC circuit is deactivated when the low voltage battery is in a 

fully charged condition. In this mode, the total power loss in the PFC, SRC, and buck converter circuits 

were 94 W, 73 W, and 32 W, respectively. This indicates that the amount of supplied current in each 

circuit had a significant effect on the power loss. 

In Operating Mode 2 (Figure 7b), 2.5 kW of power flowed from the high-voltage battery to the 

low-voltage battery, which necessitated a large amount of power to be allocated to the LDC circuit 

compared to that in the other operating modes. In the high-voltage buck converter, the voltage 

remained constant as the circuit was under CV control, while the current decreased somewhat, which 

resulted in a smaller power loss than in Operating Modes 1 and 3. However, in the low-voltage buck 

converter, the power supply increased eight times, and the power loss increased relative to that of 

other operating modes. 

In Operating Mode 3 (Figure 7c), which denotes OBC/LDC simultaneous charge mode, a power of 

7.2 kW was supplied, of which 6.9 and 0.3 kW were allocated to the OBC and LDC circuits, respectively, 

depending on the load of the controller. Since the power distribution was the same as that of Operating 

Modes 1 and 4, the loss of each circuit was also similar. In total, an efficiency of 96.99% was realized in 

Operating Mode 3. 

In Operating Mode 4 (Figure 7d), 3.3 kW of power flowed backward from the high-voltage battery 

to the system power and onward to the low-voltage battery. This backward flow produces a different 

power loss depending on the reverse recovery time of the active devices and the size of the reverse 

bias voltage, although the loss is smaller than that in the forward direction. In total, the efficiency of 

Operating Mode 4 was computed to be 96.75%. 
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(b) 

Figure 7. Cont. 
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(c) 

 

(d) 

Figure 7. Power loss in the designed module; (a) Mode 1, (b) Mode 2, (c) Mode 3, and (d) Mode 4. 

 

The results of the heat flow analysis are shown in Figures 8–15 for the various operating modes. 

The conditions for this analysis included a cooling water flow of 6 LPM in the forward direction (left 
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inlet, right outlet), and to simulate the exposure of the charger module to air, the convection conditions 

on the external surface were set to 300 K and h = 10 W/m2-K. To confirm the heat flow characteristics for 

each operating mode, the results of streamline, pressure, velocity, and temperature distributions over 

a time period of 4000 s were evaluated. The streamline distribution was identified using a top-view 

drawing. The pressure and velocity characteristics were identified by drawing the cross-section of 

a cooling channel through which the fluid flows (Section View III in Figure 8). The temperature 

distribution was evaluated based on the locations of the major devices. In Figure 8, Section View I (a) 

shows the center position of the cooling water channel, Section Views IV (d) and V (e) show the center 

position of the inductor, and Section View VI (f) shows the center position of the capacitor. 

 

Figure 8. Streamline, pressure, velocity, and temperature distribution in the integrated module with a 

cooling water flow rate of 6 LPM over a 4000 s time span in Operating Mode 1. 

The results of analyzing Operating Mode 1 are shown in Figure 8. The streamline, pressure, and 

velocity distributions shown in the figures were used to verify the flow characteristics of the cooling 

water. The streamline distribution shows that the fluid was injected into the inlet, passed through the 

internal channel, and flowed out the outlet. As the water flowed through the module, the heat from 

the heat sources was transferred to the cooling water, and then flowed out through the outlet and 

away from the module. The pressure distribution in the cooling water channel was predicted to be 

the highest at the inlet and to drop by 11.62 kPa as it flowed through the channel. A high velocity 

distribution with a small cross-sectional area was seen in the inlet and outlet channels on the bottom of 

the module with a relatively low velocity distribution in the center where the majority of the heating 

sources were concentrated. 

A limitation was identified in this analysis in that the parallel configuration of the cooling water 

channels introduces variations in the velocity distribution of each channel, depending on the degree of 

flow distribution. This should be improved by adjusting the channel layout as the current configuration 

degrades the heat transfer coefficient and heat transfer rate. In the future, we plan to conduct a 

follow-up study to optimize the cooling performance, based on the results of this study. 

In terms of the temperature distribution, the highest temperatures in Section View I were observed 

in N-Mosfet XXI (410.9 K) and XXIII (410.5 K). In Section View II, the highest temperatures were 

observed in Mosfet II (320.3 K), Mosfet III (319.5 K), Mosfet V (319.6 K), and Mosfet VIII (318.2 K). 
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In Section Views III and IV, the highest temperatures were observed in Inductor I (422.6 K) and 

Inductor II (417.7 K). In Section View V, the highest temperatures were observed in Capacitor I (319.9 K), 

Capacitor II (326.1 K), and Capacitor IV (318.7 K). These results were produced by the circuit load 

associated with SRC operation in Operating Mode 1 in which the OBC operates independently. Note 

that the results varied as the operating mode changed. In other words, the operating circuit domain is 

affected by the operating mode, which changes the heating elements and the heating value. 

The internal temperature changes over time in Operating Mode 1 are shown in Figure 9, where 

it can be seen that for Mosfet and N-Mosfet, which are relatively small devices, the temperature of 

the circuit after startup quickly rose until it stabilized at around 200 s. However, in the case of the 

transformer, inductor, and capacitor, which have relatively large volumes, the temperature curve is 

gentle and it takes a long time to reach steady state. In other words, as Mosfet and N-Mosfet have 

a larger heat source or heating value per unit volume (W/m3), the temperature rapidly rises until it 

reaches steady state. In the future, to prevent these devices with large heat sources from reaching their 

critical temperature, the cooling design should reflect the circuit characteristics and operating mode as 

well as the required durability of each device. 

 

Figure 9. Temperature profile of the module for a cooling water flow rate of 6 LPM in Operating Mode 1. 

 

When the charging rate of the low-voltage battery for vehicle control becomes too low, the LDC 

operates independently (Operating Mode 2). This configuration is shown in Figure 10. When the 

streamline is examined to identify the characteristics of the cooling water, it can be seen that a streamline 

formed along a channel shape similar to that in Operating Mode 1 with the same behavior. In addition, 

the predicted velocity and pressure distributions were similar to those in the previous case. In terms of 

the numbers, the highest pressure distribution appeared at the inlet, and the pressure drop through the 

system was predicted to be 11.98 kPa. With regard to the temperature distribution for each section, 

in Section View I, the highest temperature was observed in N-Mosfet XXII (443.0 K). In Section View 

II, the highest temperatures were observed in Mosfet XIII (326.2 K), Mosfet XIV (325.6 K), Mosfet XV 

(327.4 K), and Mosfet XVI (326.5 K). In Section Views III and IV, no device exhibited a particularly 

high temperature. In Section View V, the highest temperature was observed in Capacitor IV (347.1 K). 
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As explained above, these results were produced using a circuit load consistent with the independent 

operation of the LDC in Operating Mode 2. Thus, the cooling system design should be based on 

N-Mosfet XXII, which exhibited the highest temperature. Note that it is important that the cooling 

system be improved because the predicted temperature of 443.0 K is high enough to affect the durability 

of the device. 

 

 
Figure 10. Streamline, pressure, velocity, and temperature distribution in the module for a cooling 

water flow rate of 6 LPM over a time period of 4000 s in Operating Mode 2. 

The internal temperature changes over time in Operating Mode 2 are shown in Figure 11. 

As shown, for relatively small devices, such as Mosfet and N-Mosfet (i.e., devices with a large heat 

source in terms of the heating value per unit volume (W/m3)), the temperature rises quickly from 

startup until it converges to steady state at around 200 s. In the case of the transformer, inductor, 

and capacitor (all devices with a small heat source in terms of the heating value per unit volume 

(W/m3)), the temperature curve is relatively gentle. Therefore, in the design of the cooling system for 

Operating Mode 2, the circuit characteristics and operating mode should be such that the N-Mosfet 

XXII is prevented from reaching the critical temperature. 

The results of the analysis conducted in Operating Mode 3 are shown in Figure 12. Note that in 

this mode, the OBC and LDC are simultaneously activated when the low-voltage and high-voltage 

batteries do not have sufficient energy stored. The predicted streamline, velocity, pressure distributions, 

and flow characteristics of the cooling water were similar to those in the previous cases. The highest 

pressure distribution was predicted to be at the inlet with an overall pressure drop of 12.05 kPa through 

the system. In terms of the temperature distribution for each section, in Section View I, the highest 

temperatures were observed in N-Mosfet XVII (375.5 K), N-Mosfet XVIII (374.9 K), N-Mosfet XXI 

(406.7 K), N-Mosfet XXII (407.9 K), N-Mosfet XXIII (399.7 K), N-Mosfet XXV (373.4 K), and N-Mosfet 

XXVI (372.4 K). In Section View II, the highest temperatures were observed in Mosfet I (330.3 K), Mosfet 

II (330.1 K), Mosfet III (340.0 K), Mosfet IV (342.4 K), Mosfet IX (331.8 K), and Mosfet X (330.4 K). 

In Section Views III and IV, the highest temperatures were observed in Inductor I (423.2 K) and 

Inductor II (418.4 K). In Section View V, the highest temperatures were observed in Capacitor I (320.3 K), 

Capacitor II (325.8 K), and Capacitor IV (319.6 K). The overall temperature trend was similar to that 
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of Operating Mode 1. As the OBC and LDC were activated simultaneously and both low-voltage 

and high-voltage batteries were charged, the trends in this mode were similar to those of the OBC 

independent operation mode. 

 

Figure 11. Temperature profile of the integrated module for a cooling water flow of 6 LPM in Operating 

Mode 2. 
 

 

Figure 12. Streamline, pressure, velocity, and temperature distribution in the integrated module for a 

cooling water flow rate of 6 LPM over a time period of 4000 s in Operating Mode 3. 
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The internal temperature changes over time in Operating Mode 3 are shown in Figure 13. The shape 

of the temperature rise differs depending on the size of the heat source in terms of the heating value 

per unit volume (W/m3). When compared to Operating Mode 1 (448.3 K), the highest temperature in 

the module decreased to 442.6 K. This was likely because the power was distributed when both the 

OBC and LDC were charged, compared to the case when only the OBC was in use for the same power 

source. Thus, the loss in the circuit was lower. 

 

Figure 13. Temperature profile of the integrated module for a cooling water flow of 6 LPM in Operating 

Mode 3. 

The results of analyzing the circuit in Operating Mode 4 are summarized in Figure 14, where it 

can be seen that the power flows from the high-voltage battery to the system power and LDC in this 

configuration. The predicted streamline, velocity, pressure distributions, and flow characteristics of 

the cooling water were similar to those in the previous cases. The highest pressure distribution was 

located at the inlet, and a pressure drop of 11.00 kPa was predicted in the system. In terms of the 

temperature distribution for each section, in Section View I, the highest temperatures were observed in 

N-Mosfet XVIII (370.7 K), N-Mosfet XX (329.7 K), N-Mosfet XXI (329.6 K), and N-Mosfet XXII (336.4 K). 

In Section View II, the highest temperatures were observed in Mosfet I (309.6 K), Mosfet II (309.4 K), 

Mosfet III (308.6 K), and Mosfet IV (314.0 K). In Section Views III and IV, the highest temperature was 

observed in Inductor II (312.2 K). In Section View V, the highest temperature was observed in Capacitor 

IV (347.4 K). The overall predicted temperature was lower than that in the other modes (394.3 K), 

which is because the thermal load generated from the loss was based on output powers in the OBC 

and LDC circuits of 3 and 0.3 kW, respectively, when the power flowed from the high-voltage battery 

to the system power and LDC. The internal temperature changes over time in Operating Mode 4 are 

shown in Figure 15. Note that the predicted temperature curves differed depending on the size of the 

heat source in terms of the heating value per unit volume (W/m3) of each device. 

The results demonstrated that the locations and heating values of the heating elements vary 

depending on the operating mode of the integrated module. Thus, it is essential that the cooling system 

design is optimized accordingly. In other words, the design must consider the circuit characteristics, 
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operating mode, and required durability of each device to prevent any device from reaching its 

critical temperature. 

 

 
Figure 14. Streamline, pressure, velocity, and temperature distribution in the integrated module for a 

cooling water flow rate of 6 LPM over a time period of 4000 s in Operating Mode 4. 

 

 

Figure 15. Temperature profile of the integrated module for a cooling water flow rate of 6 LPM in 

Operating Mode 4. 
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4. Conclusions 

A numerical analysis methodology for the circuit and heat flow characteristics of a 7.2 kW 

integrated bidirectional OBC/LDC module with different operating modes was presented, based on 

which the following conclusions were obtained. First, a numerical analysis model for the loss rate of 

an electric circuit was proposed, and the calculated loss rate was adjusted based on the heating value. 

This value was supplied as an input to the heat flow analysis process to determine the equilibrium state 

of the temperature distribution. When analyzed, the electrical circuit and heat flow characteristics of 

the module were changed based on the operating mode, which affected which circuits were activated. 

The power losses in the operating modes were approximately 142 and 196 W, respectively, when the 

LDC and OBC were operated independently. However, in a high-voltage/low-voltage charging mode 

in which both the OBC and LDC were activated, the power loss was the highest at approximately 

216.36 W. Furthermore, in Operating Mode 4, in which the power flows from the high-voltage battery 

to the system power and LDC, the power loss was the lowest at approximately 107 W. 

To examine the thermal characteristics, in Operating Mode 1, where the OBC operates 

independently, the highest temperatures were observed in N-Mosfet XXI (410.9 K), XXIII (410.5 K), 

Inductor I (422.6 K), and Inductor II (417.7 K). In terms of the changes in the internal temperature over 

time, in the devices with a large heat source in terms of the heating value per unit volume (W/m3), 

such as Mosfet and N-Mosfet, the temperature rose quickly until it reached steady state (around 200 s). 

However, in the case of the transformer, inductor, and capacitor, it took much longer to reach steady 

state because the temperature rise curve was gentle. In Operating Mode 2, in which the LDC operates 

independently, the highest temperature was predicted in N-Mosfet XXII (443.0 K). In Operating Mode 

3, where the OBC and LDC are activated simultaneously, the highest heating value was generated in 

many devices. However, as the power was distributed, the heating temperature in the circuit decreased 

to 442.6 K, compared to 448.3 K in Operating Mode 1. Thus, it is essential that the cooling design for the 

integrated module consider the cooling characteristics in different modes as well as the characteristics 

of the mode with the largest power loss. 
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Nomenclature 

C capacitor constant, F 

Cp specific heat, J/kg-K 

Cr capacitor constant in the resonant network system, F 

C1ε constant 

C2ε constant 

C3ε constant 

D duty cycle in the power factor circuit 

Fx ratio of the resonant and operating frequencies 

Gb turbulence kinetic energy due to buoyancy, kg/s3-m 

Gi duty cycle—current transfer function 

Gk turbulence kinetic energy due to the mean velocity gradient, kg/s3-m 

Gresonant.g resonant gain function in the series resonant circuit 

Gsw.g switching gain function in the series resonant circuit 

Gv voltage—current transfer function 
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iL current in the transfer function, A 

IL current constant at the PFC current sensor, A 

k turbulence kinetic energy, m2/s2 

ke f f effective conductivity, W/m-K 

L inductor constant, H 

Lr inductor constant in the resonant network system, H 

Np number of primary windings in the transformer 

Ns number of secondary windings in the transformer 

p pressure, Pa 

Q quality factor 

R resistance constant, Ω 

Rac equivalent resistance in the series resonant circuit, Ω 

RL resistance in the two-stage series resonant circuit, Ω 

s Laplace transform parameter 

Se heat source, W/m3 

t time, s 

T temperature, K 
→
u velocity, m/s 

Vconvert voltage gain function in the series resonant circuit, V 

VDC output DC voltage in the power factor circuit, V 

Vo output voltage in the power factor circuit, V 

ε dissipation rate of the turbulent kinetic energy, m2/s3 

µ viscosity, Pa-s 

µt turbulent viscosity, Pa-s 

ρ density, kg/m3 

σk turbulent Prandtl number for k 

σε turbulent Prandtl number for ε 
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